EE 203 PROBABILITY AND RANDOM VARIABLES
HOMEWORK – 1

1. Show that

            _____      _____

a)  Ā U Ē  U  Ā U E  = A.

                    ____        _          _

b) (A U E) (A E) = A E  U  E A .   

                                                                                                                  ___

2. If A = { 2 ≤ x ≤ 5 } and B = { 3 ≤ x ≤ 6 } , find A U B, AB and (A U B)(AB).

                                                                    _

3. Show that if AB = { Ø }, then P(A) ≤ P(B).

4. Show that 

                                                          _        _

a) If P(A) = P(B) = P(AB), then P(AB U BA) = 0.

b)  If P(A) = P(B) = 1, then P(AB) = 1.

5. Prove and generalize the following identity 

P(A U B U C) = P(A) + P(B) +P(C) - P(AB) - P(AC) - P(BC) + P(ABC)

6. If S = { 1, 2, 3, 4 }, find the smallest field that contains the sets { 1 } and  

       {2, 3 }.              

7. If A  ⊂ B,  P(A) = ¼  and  P(B) = 1/3, find P(A | B) and P(B | A).

8. Show that 

a)  P(AB | C) = P(A | BC) P(B | C).

b)  P(ABC) = P(A | BC) P(B | C) P(C).

9. A call occurs at time t  where  t  is a random point in the interval (0, 10).

a)  Find { 6 ≤ t ≤ 8 }.

b)  Find { 6 ≤ t ≤ 8  |  t > 5 }.

10. The events A and B are mutually exclusive. Can they be independent ?
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1. Ten passengers get into a train that has 3 cars. Assuming a random placement of passengers, what is the probability that the first car will contain three of them?

2. Box 1 contains 1000 bulbs of which 10% are defective. Box 2 contains  2000 bulbs of which 5% are defective. Two bulbs are picked from a randomly selected box. 

a) Find the probability that both bulbs are defective.

b) Assuming that both are defective, find the probability that they came from box 1. 

3. We have two coins; the first is fair and the second is two-headed. We pick one of the coins at random, we toss it twice and heads shows both times. Find the probability that the coin picked is fair.  

4. Box 1 contains 1 white and 999 red balls. Box 2 contains 1 red and 999 white balls. A ball is picked from a randomly selected box. If the ball is red what is the probability that it came from box 1?

5. Let p represent the probability of an event A. What is the probability that 

a) A occurs at least twice in n independent trials?

b) A occurs at least three times in n independent trials?

6. A pair of dice is rolled 50 times. Find the probability of obtaining double six at least three times?

7. Consider the following three events: (a) At least 1 six is obtained when six dice are rolled, (b) at least 2 sixes are obtained when 12 dice are rolled, and (c) at least 3 sixes are obtained when 18 dice are rolled. Which of these events is more likely?

8. Suppose there are  r successes in n idependent Bernoulli trials. Find the conditional probability of a success on the i th trial.

9. If x is N (1000, 400) find (a) P{ x < 1024 }, (b)  P{ x < 1024 | x > 961 }, and (c) P{ 31 <  (x)1/2 ≤ 32 }.

10. We measure for resistance R of each resistor in a production line and we accept only the units the resistance of which is between 96 and 104 ohms. Find the percentage of the accepted units (a) if R is uniform between 95 and 105 ohms; (b) if R is normal with η = 100 and σ = 4 ohms.
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1. Given that F (x u) = u. Show that if f (-x) = f ( x), then  x 1-u = - x u .
2. Find  f (x) if  F (x) = [1 - exp ( - α x) ] U (x - c).  

3. A fair coin is tossed three times and the random variable x equals the total number of heads. Find and sketch Fx (x) and f x (x).  

4. Show that, if a ≤ x (ζ) ≤ b for every ζ Є Ω, then F(x) = 1 for x > b and  F(x) = 0 for x <a.

5. For a random variable X of N (0,100)

a. Find P (X ≤ 0)

b. Find x at which Fx (x) =1 / 2

6. For a continuous random variable X whose probability density function is even

a. Find P ( 0 < X ≤ 4) if P ( - ∞ < X ≤ - 4) = 0.3.

b. Find Fx (4). 

7. For question-3, 

a. Find P ( x ≤ 2) and   P ( x < 2) by using f x (x).

b. Repeat a. By using Fx (x).

8. A coin is tossed an infinite number of times. Find the probability that  k  heads are observed at the n th  toss but not earlier. 

9. Show that  Fx ( x | A) = P (A | x ≤ x) Fx ( x ) / P(A)
10. Over a period of 10 hours, 100 calls are made at random. What is the probability that in a 2-hour interval the number of calls is between 30 and 40 ? 
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   5.         a.    P (X ≤ 0) = ½

b.      x = 0 

     6.        a.  P ( 0 < X ≤ 4) = (1- 2 x 0.3) / 2 = 0.2

b.  Fx (4) = P ( X ≤ 4 ) = P ( - ∞ < X ≤ 0) + P ( 0 < X ≤ 4) = 0.5 + 0.2 = 0.7

7.       a.   P ( x ≤ 2) = f x (0) + f x (1) + f x (2) = 1/8 + 3/8 + 3/8 = 7/8           

                 P ( x < 2) = f x (0) + f x (1) = 1/8 + 3/8 = 1/2

        b.   P ( x ≤ 2) = Fx (2 +) = 7/8 and P( x < 2) = Fx (2 -) = 1/2.
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           10.      p = 2 / 10 = 1 / 5
The probability that k calls will occur in a 2-hour interval = 
[image: image19.png]



The probability that in a 2-hour interval the number of calls is between 30 and 40
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1. The random variable x is N(5,4) and y = 2x + 4. Find ηy , σy2. 

2. Find Fy(y) and fy(y) if Fx(x) = (1 – e – 2 x )U(x) and y = x 2.
3. Find Fy(y) in terms of Fx(x) if 
     
[image: image21.png]X -3, X=>3
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4. For the Question 3 above, find fy(y) in terms of fx(x). 
5. The random variable x is uniform in the interval (0, 1). Find the density of the random variable y = - ln x .
6. Find fy(y) in terms of fx(x) if y = | x |.
7. Repeat Question 6 above if 
      
[image: image22.png]L (xe)?/2





8. The random variable x has mean value ηx and variance σx2. If y = ax+b, find the mean value and the variance of the random variable y in terms of ηx and σx2.
9. If x is a binomial random variable with parameters n and p. Find E(x) and E[x (x - 1) ].
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10. Find E(x 2) and σx2 for x given in Question 9 above.
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         10.  E(X 2) =  E [ X (X - 1 ) ] +  E(X ) = n ( n - 1) p2 + np  

        = n2 p2 - n p2 + np  = n2 p2 + np (1 - p ) =  n2 p2 + npq

σx2 = E(X 2) - [ E(X) ] 2 = n2 p2 + npq - n2 p2 = npq 
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1. The characteristic function of a binomial random variable X is given by 

       ΦX (ω) = ( p e j ω + q ) n . Find E(X) and σ
[image: image33.wmf]2

X

.  

2. Find the characteristic function of a Gaussian r.v. X

3.   X and Y are jointly normal (Gaussian) distributed if their joint p.d.f. has the following form:
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           It can be shown that 
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           and similarly
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         Write f xY (x,y) for ρ = 0.
4. Are the r.v. s X and Y given in the above Question 3 independent in general ? For what values of ρ are they independent ?  

5. Given the joint p.d.f as

      [image: image37.png]2 -y
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0, otherwise.




        Determine whether X and Y are independent. 
6. The exponential random variable X ~ ε(λ) has the probability density function f X (x) = λ e –λx, x ≥ 0, λ > 0. Find the mean, variance and the characteristic function of ε (λ).

7. X, Y are jointly normal (Gaussian) random variables which are independent. μx = μy = 0 and σ
[image: image38.wmf]2

x

 = σ
[image: image39.wmf]2

Y

 = 1. Find P(-∞ < X < 0, -∞ < Y < 0).

8. Repeat the above Question 7, if μx = μy = 0 and σ
[image: image40.wmf]2

x

 = σ
[image: image41.wmf]2

Y

 = 100.

9. f XY  (x,y) = 2 / (π b), 0 ≤ x ≤ b, 0 ≤ y ≤ π / 2. Find marginal p.d.f. s

10. Find E(X) if ΦX (ω) = [1 / ( j ω ) ] [ - 1 + exp (j ω)] 
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1. For the binomial random variable X   
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2. For Gaussian r.v. X                   
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3.  For ρ = 0 
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4.   The r.v. s X and Y given in the above Question 3 are not independent in general. It is shown in the answer to Question 3 that they are independent for ρ = 0.

5.    First evaluate the marginal p.d.f. s
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6.   Mean = E(X) = 
[image: image52.wmf]ò

¥

¥

-

x f X (x) dx =
[image: image53.wmf]ò

¥

0

x λ e –λx dx = λ
[image: image54.wmf]ò

¥

0

x e –λx dx

      Let u = x, dv = e –λx dx ⇨ du = dx, v = - (1 / λ) e –λx 

      E(X) = λ
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              = λ [ 0 + (1 / λ)(- 1 / λ) e –λx |
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      E(X 2) = 
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      Let u = x2, dv = e –λx dx ⇨ du = 2xdx, v = - (1 / λ) e –λx

      E(X 2) = λ
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      Variance = σ
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x

 = E( [X - E(X) ] 2 ) = E(X 2) - [ E(X) ] 2  

                     = 2 / λ2 - (1 / λ) 2  = 1 / λ2   

       Characteristic function = ΦX (ω) = E (e j x ω) = 
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                  = λ / (j ω – λ) (0-1) = - λ / (j ω - λ) = 1 / (1- j ω / λ)
7.  P(-∞ < X < 0, -∞ < Y < 0) = FXY (0,0) - FXY (0, -∞) - FXY (-∞,0) + FXY (-∞,-∞)

     Since X,Y are independent, FXY (x,y) = FX (x) FY (y) 

     So P(-∞ < X < 0, -∞ < Y < 0) = FX (0) FY (0) - FX (0) FY (-∞) - FX (-∞) FY (0)

                                                      + FX (-∞) FY (-∞) 

           = (1/2) (1/2) - (1/2)(0) - (0) (1/2) + (0) (0) = 1/4  

8.  P(-∞ < X < 0, -∞ < Y < 0) = FXY (0,0) - FXY (0, -∞) - FXY (-∞,0) + FXY (-∞,-∞)

      Since X,Y are independent, FXY (x,y) = FX (x) FY (y) 

      So P(-∞ < X < 0, -∞ < Y < 0) = FX (0) FY (0) - FX (0) FY (-∞) - FX (-∞) FY (0)

                                                      + FX (-∞) FY (-∞) 

           = (1/2)(1/2) - (1/2)(0) - (0)(1/2) + (0)(0) = ¼, i.e. the same probability 

       as in the above Question 7.

9. f XY  (x,y) = 2 / (π b), 0 ≤ x ≤ b, 0 ≤ y ≤ π / 2

       f X (x) = 
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                 = 1 / b, 0 ≤ x ≤ b
       f Y (y) = 
[image: image78.wmf]ò
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f XY  (x,y) dx = 
[image: image79.wmf]ò
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                 = 2 / π, 0 ≤ y ≤ π / 2
10.  E(X k) = (1 / j k) [∂kΦX (ω) / ∂ωk ] | ω=0
       E(X) = (1 / j ) [∂ΦX (ω) / ∂ω ] | ω=0
       ΦX (ω) = [1 / ( j ω ) ] [ - 1 + exp (j ω) ] 

      [

       ∂ΦX (ω) / ∂ω] = { ( j ω) j exp (j ω) - j [ - 1 + exp (j ω) ] } / (-ω2)                                  

       [∂ΦX (ω) / ∂ω ] | ω=0 = 0 / 0

       Thus differentiating the numerator and the denominator to find the limit

       [∂ΦX (ω) / ∂ω ] | ω=0 = { - j ω exp (j ω) - exp (j ω) + exp (j ω) } / (-2ω)

                                  = { - j ω exp (j ω) } / (-2ω) = 0 / 0

   Again differentiating the numerator and the denominator

   [∂ΦX (ω) / ∂ω ] | ω=0 = - j { j ω exp (j ω) + exp (j ω) } / (-2) = j / 2  
        E(X) = (1 / j ) [∂ΦX (ω) / ∂ω ] | ω=0 = (1 / j ) ( j / 2 ) = 1 / 2 

ECE 307 PROBABILITY AND RANDOM PROCESSES

HOMEWORK – 6

1. An unknown random phase θ is uniformly distributed in the interval (0,2π), and r = θ + n where n is a random variable of N(0, σ 2). Assume that θ  and r  are independent. Determine f ( θ | r ).  
2. fXY  (x,y) = 2 / π , 0 ≤ x ≤ 1, 0 ≤ y ≤ π / 2. Find P(0< x ≤ 0.5, 0< y ≤ π / 4).

3. y = x1 + x2 + x3 where x1, x2, x3 are Gaussian random variables N(1,1), N(2,4), N(3,9), respectively. Also x1, x2, x3 are mutually uncorrelated, i.e. covariance, Cov i j = E { [ x i - E (x i) ] [ x j - E (x j) ] } = 0 for every i ≠ j. Find the mean and variance of y. 

4. y = 
[image: image81.wmf]å
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 where xi are independent random variables and each is uniform in the interval (-1,1). Find the probability density function of y. 

5. Show that if x ( t ) is real wide sense stationary process, then                         

E { [ x ( t + τ ) - x ( t ) ] 2 } = 2 [ Rxx(0) - Rxx(τ) ].

6. The stochastic process x ( t ) is wide sense stationary and Gaussian with E { x ( t ) } = 0 and R (τ) = 4 exp ( - 2 | τ | ) 

a. Find P { x ( t ) ≤ 3 }.

b. Find E { [ x ( t + 1 ) - x ( t - 1 ) ] 2 }.

7. Random process x ( t ) is the input of a system with frequency response H(ω) = exp ( j a ω ) - exp ( - j a ω ). E[ x ( t ) ] = 0. The output is the random process y(t). Power spectrum of x ( t ) is unity, i.e. Sxx(ω) = 1 for all ω. 

a. Find the power spectrum of y ( t ).

b. Find the autocorrelation function of x ( t ).

c. Find the autocorrelation function of y ( t ).

d. Is x ( t ) white noise? Why?

e. Is y ( t ) white noise? Why?

8. Given the joint p.d.f as

    [image: image82.png]2 -y
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0, otherwise.



  

     Find the best MMSE (Minimization of the Mean Square Error) estimator 
[image: image83.wmf]    
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ECE 307 PROBABILITY AND RANDOM PROCESSES

ANSWERS TO HOMEWORK – 6

1.   
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2.  fXY  (x,y) = 2 / π , 0 ≤ x ≤ 1, 0 ≤ y ≤ π / 2. 
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                  = 2 x y  / π

P( 0< X < 0.5, 0< Y < π / 4) = FXY (0.5, π / 4) - FXY (0.5, 0) - FXY (0, π / 4) + 

                                                FXY (0,0)

                                             = 1 / 4 - 0 - 0 - 0 = 1 / 4

3. E (y ) = E (x1 + x2 + x3) = E (x1) + E (x2) + E (x3) = 1 + 2 + 3 = 6.

    Since x1, x2, x3 are mutually uncorrelated, σ
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4. E( y ) = E(
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     Var ( xi ) =
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     Var ( y ) = σ
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    Using Central Limit Theorem, y approaches Gaussian. Thus

    fY(y) = (2000 π / 3 ) –1/2  exp ( - 3 y 2 / 1000 ) 

5. E { [ x ( t + τ ) - x ( t ) ] 2 } = E { [ x ( t + τ ) - x ( t ) ] [ x ( t + τ ) - x ( t ) ]  }   

                                             = Rxx(0) - Rxx(τ) - Rxx(- τ) + Rxx(0)

     Since Rxx(τ) is even,  Rxx(τ) = Rxx(- τ) so

     E { [ x ( t + τ ) - x ( t ) ] 2 } = 2 [ Rxx(0) - Rxx(τ) ].

6. a. The random variable x ( t ) is Gaussian with zero mean and variance          

        E { x 2 ( t ) } = R (0) = 4, hence it is  N (0,4) and 

        P { x ( t ) ≤ 3 } = Fx (3) = G [ (3 – 0) / (4)1/2 ] = G (1.5) = 0.933

     b. E { [ x ( t + 1 ) - x ( t - 1 ) ] 2 } = 2 [ R(0) - R (2) ] = 8 ( 1 - e-4)

7.  a.  Syy(ω) =  Sxx(ω) | H(ω) | 2 = 1. | [ exp ( j a ω ) - exp ( - j a ω ) ] | 2   

          = | 2 j sin (a ω) | 2 = 4 sin 2 (a ω).

b. Rxx (τ) =  [1 / (2 π ) ]
[image: image102.wmf]ò
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Sxx (ω) exp ( j ω τ ) d ω 

     = [1 / (2 π ) ]
[image: image103.wmf]ò
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1 . exp ( j ω τ ) d ω  =  δ (τ)

c. Syy(ω) = 4 sin 2 (a ω) = 4 { (1/2) [1 - cos (2 a ω ) ] } = 2 [1-cos (2 a ω )]   

= 2 - [ exp ( j 2 a ω ) + exp ( - j 2 a ω ) ] = 2 - exp (j2aω) - exp (-j2aω)     Ryy (τ) = 2 Rxx (τ) - Rxx (τ + 2 a) - Rxx (τ - 2 a) 

           Ryy (τ) = 2 δ (τ) - δ (τ + 2 a) - δ (τ - 2 a)

d. x ( t ) is white noise because its expected value is constant and its autocorrelation function is δ (τ), i.e., it has a flat power spectral density for all frequencies ω.

e. y ( t ) is not white noise because its autocorrelation function is not δ(τ), i.e., it does not have a flat power spectral density for all frequencies ω.

8. 
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= E ( X |
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x  f X | Y ( x  | y) dx 

 f X |Y ( x  | y) = fX Y ( x  | y)  /  f Y (y) 

      f Y (y) = 
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fX Y ( x  | y) dx =  
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                                                          = (1/2)y 2 e – y

     f X |Y ( x  | y) = fX Y ( x  | y)  /  f Y (y) = x y 2 e – y /  [ (1/2)y 2 e – y ] = 2 x
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