EE 203 PROBABILITY AND RANDOM VARIABLES

COURSE CONTENT

Description of Probability

Set Theory

Probability Space

Conditional Probability

Repeated Trials (Bernoulli’'s Theorem)
Random Variables

Probability Distribution Functions
Probability Density Functions
Some of the Important Random Variables
10. Conditional Distributions

11. Functions of One Random Variable
12. Mean and Variance

13. Moments

14. Characteristic Functions

15. Two Random Variables

16. Joint Moments

17. Conditional Distributions

18. Sequences of Random Variables
19. Mean Square Estimation

20. Correlation and Covariance

21. Noise (White and Colored)

22. Power Spectrum

23. Limit Theorems

24. Statistics

CoNoaRrLON=

TEXT BOOK:
1. NAME : Probability, Random Variables and Stochastic Processes
AUTHOR . Athanasios Papoulis, S. Unnikrishna Pillai
PUBLISHER : McGraw-Hill
ISBN : 0-07-112256-7 (ISE)
EDITION : 2002 (Fourth Edition)

LIBRARY CODE : QA 273 P218 2002

REFERENCE BOOKS:

1. NAME : Probability and Random Processes for Electrical Engineers
AUTHOR : Yannis Viniotis
PUBLISHER : McGraw-Hill
ISBN : 0-07-067491-4
EDITION : 1998

LIBRARY CODE : QA 273 V56 1998



2.  NAME : Probability, Random Variables and Stochastic Processes

AUTHOR . Athanasios Papoulis
PUBLISHER : McGraw-Hill
ISBN :  0-07-100870-5
EDITION : 1991
LIBRARY CODE : QA 273 P218 1991
3. NAME : A First Course in Probability
AUTHORS :  Sheldon Ross
PUBLISHER . Prentice-Hall, Inc.
ISBN : 0-13-896523-4
EDITION : 1998 (Fifth Edition)
LIBRARY CODE : QA 273 R826 1998
4. NAME . Probability and Random Processes with Applications to Signal
Processing
AUTHORS : Sheldon Ross
PUBLISHER . Prentice-Hall, Inc.
ISBN : 0-13-896523-4
EDITION : 1998 (Fifth Edition)
LIBRARY CODE : QA 273 R826 1998
GRADING:
HOMEWORKS: 0%
QuUIZ: 5x3% =15 %
ATTENDANCE: 5%
1 MID TERM EXAM (IN CLASS) 40 %
1 FINAL EXAM (IN CLASS) : 40 %
TOTAL: 100 %
Note: It is essential that students show at least 70 % attendance in lectures.



1. Basics

Probability theory deals with the study of random phenomena

Under repeated experiments, random phenomena yield different
outcomes that have certain underlying patterns

An experiment assumes a set of repeatable conditions that allow any
number of identical repetitions.

When an experiment is performed under these conditions, certain
elementary events §; occur in different but completely uncertain ways.

We can assign nonnegative number P(&), as the probability of the

event & in various ways

Laplace’s Classical Definition:

The Probability of an event A is defined a-priori without actual
experimentation as

. Number of outcomes tavorable to 4
PA) =

Total number of posszible outcomes

provided all these outcomes are equally likely.
Consider a box with n white and m red balls.
In this case, there are two elementary outcomes: white ball or red ball.

Probability of “selecting a white ball” = n/ (n+m)

Relative Frequency Definition:



The probability of an event A is defined as

P(4) = lim 24

n—» o0 n
where

nais the number of occurrences of A
n is the total number of trials.

The totality of all & known a priori, constitutes a set Q

The set of all experimental outcomes

Q={&,&,..,&, ...}

Q has subsets A, B, C, ...

If A is asubsetof Q, then & € A implies &€ € Q

From A and B, other related subsets can be generated, like:

A'\_,'B:f__ﬂfn;—:*{ or fu—:B}
ANB={&é|E€Ad and & e B}
4 _ S el g+ 4
A _I':|': '::1:,

O
=D

AUB AN B A

® If ANB =4, the empty set, then A and B are said to be mutually
exclusive (M.E).



® A partition of Q is a collection of mutually exclusive subsets of Q
such that their union is Q.

A N4, =¢, and Q4=Q

0.0

ANB=¢

De-Morgan’s Laws:

AuB:ZmE; ANB=AUB
AuB

 Event: Some of the subsets of (O can be considered as events, for
which we must have mechanism to compute their probabilities.

Example: Consider the experiment where two coins are simultaneously
tossed. The various elementary events are

§1=(H,H), §2=(H,T), gs =(T,H), §4Z(T>T)

and

Q={&,5,E,8,}



The subset

A= {51952953}

is the same as “Head has occurred at least once” and is also an event.
Suppose two subsets A and B are both events, then consider

“Does an outcome belongto AorB=AUB?”

“Does an outcome belongto Aand B=ANB ?”

“Does an outcome fall outside A ?”

Thus the sets

AnEB A

A B . R, etc.

b b

also qualify as events.

Formalize this using the notion of a Field.

» Field: A collection of subsets of a nonempty set Q forms a field F if
1) QeF

(i) IfAeF, then AeF
(1) f AeF and BeF, then AUBeF.

Using (i) - (iii), it can be shown that

..‘_I o B., j i B* efC.



also belong to F.

E.g., from (ii) we have
Ae F, Be F,

and using (iii) this gives

ZUEEF;

applying (ii) again and using De Morgan’s theorem we get

ZUE:AmBeF,
Thus if

AeF,BeF,

then
F={0,4,B,4B,A0B,ANB,AUB, |

From now on, we will use the term ‘event’ only to members of F.

Assuming that the probability

p; = P(S)

of elementary outcomes & i of Q are apriori defined, how does one
assign probabilities to more ‘complicated’ events such as A, B, AB, etc.?

The three axioms of probability defined below can be used to assign
probabilities to more ‘complicated’ events.

Axioms of Probability




For any event A, assign a number P(A), called the probability of the
event A.

This number satisfies the following three conditions

(1) P(A) =0 (Probability is a nonnegative number)
(i1) P(Q)=1 (Probability of the whole set is unity)
(1) If AnB=¢, then P(AUB)=P(A)+ P(B).

Note: (iii) states that if A and B are mutually exclusive (M.E.) events, the
probability of their union is the sum of their probabilities.

The above three conditions form the axioms of probability.

The following conclusions follow from these axioms:
a. Since 4w A = Q .we have using (i1)
P(4wA)= P(Q)=1.
But 4 ~» 4 e ¢ . and using (1),

P(Au A)= P(A)+P(A4)=1 or P(A)=1- P(A)
b. Suilarly, forany 4, 4 m ¢ = ¢ .
Hence it follows that P(4 w ¢ )= P(A)+ P(¢)
But4 v ¢ = A.andthus P(¢)=0.
c. Suppose 4 and B are nof nmtually exclusive (M.E.)?

How does one compute F(4 ' B) =7

To compute the probability in ( ¢ ) above, we re-express



A Binterms of M.E. sets so that we can make use of

the probability axioms. From Fig. we have
AU B =AU 4B, oa

where 4 and 4B are M.E. events. 18

Thus using axiom (111)

P(Au B)=P(A U AB)= P(A)+ P(A4B).

To compute P(AB), we can express B as

B=BNnQ=Bn(4du A)
=(BnA)u(BnA)=BAu BA

Thus

P(B)= P(BA)+ P(BA).

since B4 = AB and BA= 4B are M.E. events.

P(AB)= P(B)— P(AR)

and using this equation in

P(AU B) = P(AU AB) = P(A) + P(A4B).

we have

P(AU B) = P(A)+ P(B) - P(AB).



* Question: Suppose every member of a denumerably
mfimte collection 4 of pair wise disjoint sets 1s an

event, then what can we say about their wuon

A= O A9
i=1

1.e., suppose all 4, € F, what about.4? Does it

belong to F?
Further, 1f 4 also belongs to F, what about P(4)?

For example, in a coin tossing experument, where the same coin 1s
tossed indefiutely, define

A = “head eventually appears™.

[s 4 an event?

Our mfuitive experience surely tells us that 4 15 an event.

Let
A, = {head appears for the 1st time on the nth toss}
={t.1,1,-- ,1,h}
n-1
Clearly 4 4, =9¢.
Moreover the above 4 15
A=A VA, VA V- UA U---

10



Here probability axiom (iii) can not be used to compute P(A), since the
axiom only deals with two (or a finite number) of Mutually Exclusive
events.

To settle both questions above, extension to axioms must be done.
o - Field:

A field F is a o -field if in addition to the three conditions in the above
axioms of probability, we have the following:

For every sequence

A4, 1i=1->xm,

of pair wise disjoint events belonging to F, their union also belongs to F,
l.e.,

A=J4 eF.

i=1
Using the above equation, another axiom can be added to the above set
of 3 probability axioms, the 4" axiom as:

(iv) If Ajare pair wise mutually exclusive, then
P[U Anj =Y P(4,).
n=l1 n=1

Returning back to the coin tossing experiment, from experience we
know that if we keep tossing a coin, eventually, a head must show up,
le.,

11



and using the 4™ probability axiom

P(A) = P(O Anj = iP(An).

n=1

From,

A, = {head appears for the 1st time on the nth toss}
= {t.t.t,---.t,h)

n-1

for a fair coin since only one outcome in 211 outcomes is in favor of Ap ,
we have

P(A)= ZL" and iP(An) = ii =1,

n=1 n=1

which agrees with P(A) = 1, thus justifying the fourth probability axiom.

In summary, the ftriplet (Q, F, P) composed of a nonempty set Q of
elementary events, a o -field F of subsets of 2, and a probability
measure P on the sets in F, subject to the four axioms, form a probability
model.

The probability of more complicated events follow from this framework.

Conditional Probability and Independence

In N independent trials N,, Ng, N,z denote the number of times events
A, B and AB occur, respectively.

According to the frequency interpretation of probability, for large N

N N
P(A)~—2, P(B)y~—2, P(AB)~
()N ()N (AB)

12

NAB.




Among the N, occurrences of A, only N,z of them are also found among
the Ng occurrences of B. Thus the ratio

N, N,/N P(AB)

N, N,/N P(B)

is @ measure of “the event A given that B has already occurred”.
Denote this conditional probability by
P(A|B) = Probability of “the event A given that B has occurred”.

Define

P(AB)
P(B)
provided P(B) # 0

We now show that the above definition satisfies all the 4 probability
axioms.

P(A|B)=

13



P{AR)

P(A|B) = ——,
BiE)
: P(AB) =0 _
1) P(A|B)= =0,
W (418) P(B)=0
N ) P(QB) P(B . )
(n) ~P(Q|8)= ;{B}k?i‘g;:l* since Q B=E5.

(1) Suppose 4~ C=9. Then

P(AUC)nB) P(AB\UCB)

£(8) P(5)
But 42 n B = ¢, hence P(AB W CE)= P(ABR )+ P(CB).
pauc|B)=A8) L PIEB) _ bia1B)+ B(C| B),
Fla) — PLE)
satistymg all probability axioms .

P(AUC|B)=

FLAB)
P(B)

Thus PcA|B)= detines a legitumate probability measure.

Properties of Conditional Probability:

a. If BcA AB=B. and
C FRAB) C RLE)
AlE) i)
since 1f B —A. then occurrence of B implies automatic
occurrence of the event 4.

P(A]B)

14



As an example 1n a dice tossing expertment.
A = {outcome 12 even}, B={outcome iz 2},
Then B=A4, and P(A|B)=1.

b. It AcB, AB=4, and

_P4B) _ P4 |

= = - P(A).
P(B) P(B)

F(A|B)

c. We can use the conditional probability to express the
probability of a complicated event in terms of “sumpler”

related events.
Let A4.4,.---.4, are pair wise disjoint and their won 1s Q.

Thus 44, =¢ and

] 4, -0.
e

Thus
B=B(4wA, w---A)=BA, wBA, - BA,.

B].]-t fll- i ."11 - li:i' — Bfli i ij i = l::i'.. n0O

P(B)=Y P(BA,) =3 P(B|A,)P(4,)

i=1 i=1
Using the concept of conditional probability, the concept of
“independence of events” can be introduced.

Independence: 4 and B are said to be independent events,

1f
P(AB)= P(A)- P(B).
Notice that the above definmition 1s a probabilistic statement,

not a set theoretic notion such as mutually exclusiveness.
15



Suppose 4 and B are mdependent, then
P(4AB ) P(A)P(B) _

P(A|B)=
P(B) AP )

P(A).

Thus if A and B are independent, the event that B has occurred does not
give any clue about the event A.

It makes no difference to A whether B has occurred or not.

Example:

A box contains 6 white and 4 black balls.
Remove two balls at random without replacement.

What is the probability that the first one is white and the second one is
black?

Let W1 = “first ball removed is white”

B2 = “second ball removed is black”
We need
P(W,"B,)="?
We have

Wl mBz :VVle :BZVVI'

P(VVle) = P(BZVVI) = P(Bz | VVl)P(VVJ
Using the conditional probability rule,

PW,) = _6_ = ﬁ =i.
6+4 10 5
. . 4 4
P{\BE|FF1)=§+4=E‘
———
P(\HIBE)—g Ay

16



Are the events I, and B, independent?
The first ball has two options:

J7, = “first ball 15 white™ or

B,= “first ball 1s black™

Note that W, ~ B, =¢ and W, B, =Q.

Thus P(B,)= P(B,|W,)P(W,)+ P(B,|B,)P(B,)

4 3+ 304 4 3+1 2 4+2 2
544 5 64310 95 35 15 5
and
.23 . 12
P(B,)P(W,)==-Z= P(B,WV,) = —.
5 3 15

As expected, the events 11", and B, are dependent.

BAYES’ THEOREM

P(AB)= P(A|B)P(B).

Simularly,

p(| Ay BB _ P(4B)
P(A) P(A)

or

P(AB)= P(B|A)P(A).

From Egs. 1 and 2 we get
P(A|B)YP(B)=P(BE|A)FP(A).

o1

P(B|4)

P(A|B) = —

P(A)

known as Bayes” theorem.

17



Interpretation of Bayes’ theorem
P(A) represents the a-priori probability of the event A.

Suppose B has occurred, and assume that A and B are not
independent.

How can this new information (“B has occurred”) be used to update our
knowledge about A?

Bayes’ rule takes into account the new information (“B has occurred”)
and gives out the a-posteriori probability of A given B.

A more general version of Bayes’ theorem involves partition of Q.
P(B|4)P(4)  P(B|4)P(4)
P(B . ’
B > pBI4)P4)
i=1

P(4,|B)=

where

A, i=1—>n,

1

represent a set of mutually exclusive events with associated a-priori
probabilities

P(4),i=1—>n.

With the new information “B has occurred”, the information about Aj can
be updated by the n conditional probabilities

P(B|4,). i=1->n,
Example:

Two boxes B1 and B2 contain 100 and 200 light bulbs respectively.

The first box (B1) has 15 defective bulbs and the second 5.
Suppose a box is selected at random and one bulb is picked out.

18



(a) What is the probability that it is defective?

Note that box B1 has 85 good and 15 defective bulbs. Similarly box B2
has 195 good and 5 defective bulbs.

Let D = “Defective bulb is picked out”.

Then
P(D|B)—1—5—015 P(D|B)—i—0025
Y100 7 200

Since a box is selected at random, they are equally likely.

P(B))=P(B,) = %

Thus B1 and B2 form a partition and we obtain

P(D)=P(D|B)P(B)+ P(D|B,)P(B,)

=0.15 ><1+ O.O25><l =(.0875.
2 2

Thus, there is 8.75% probability that a bulb picked at random is
defective.

(b) Suppose we test the bulb and it is found to be defective.
What is the probability that it came from box 17?

P(B |D)="

P(D|B)P(B,) 0.15x1/2
P(D) 0.0875

P(B | D) = =0.8571.

Note that initially

P(B,)=0.5;
19



Then we picked out a box at random and tested a bulb that turned
out to be defective.

Can this information give some information about the fact that we
might have picked up box 17?

P(B | D)=0.857 > 0.5,

Thus it is more likely that we must have chosen box 1 in favor of
box 2. (Note that box 1 has six times more defective bulbs

compared to box 2).
REPEATED SYSTEMS AND BERNOULLI TRIALS

Definition: For sets A and B, the Cartesian product A x B is the set of
all ordered pairs (a, b) where a e Aand b € B.

<1 2 3>p

\ﬂ‘/\*. e N
‘;“x“x\ f(x1)  (%2)  (%3))

| -AxB
\ly 1) v.2) (.3)
Cartesian Product of A X B of the sets A={x,y,z} and B={1,2,3}

Consider two independent expertments with associated
probability models (€, F,, P,) and (€2, F,., P5).

A jomt pertormance of the two experiments produces

Let £eQ),, neQ), represent elementary events.

elementary event. @=(Z n).

How to characterize an appropriate probability

to this “combined event™ ?

Consider the Cartesian product space

Q =Q, < Q, generated from €, and €, such that 1f

e Qand 57 € Q,, thenevery @1n Q 1s an ordered pair
of the form @ = (£, ).

20



To armive at a probability model we need to define

the combined trio (Q, F, P).

Suppose A= F, and B € F,,.

Then 4 ~ B 1s the set of all pairs (& 77),

where Se4dand » € B.

Any such subset of Q appears to be a legitumate event

for the combined expertment.

Let F denote the field composed of all such subsets 4 < B
together with thetr unions and compliments.

In this combined experiment, the probabilities of the events
A < Q,and Q, < B are such that

P(A%Q,)=P(4). P(Q «B)=PB(B).

Moreover, the events 4 ~ (), and Q, < B are mdependent for
any 4 € F,and B € F,. Smce

(Ax, )N (K, xB)=AxB,

we conclude Tlﬂt

P(AxB)= P(Ax() P(L) < B) = R(A)E(E)

foralld € Fiand B € F,

This extends to a unique probability measure
P(=PxP)
on the sets in F and defines the combined trio (22, F, P).

21



Generalization: Given » experiments €,.2,.--.Q,. and
their associated #; and £, i=1— n. et

Q=0 xQ, x---xQ

n

represent their Cartesian product whose elementary events
are the ordered n-tuples &-&. -4, where s: € £+

Events 1n this combined space are of the form
A X Ay xox A
where A € 7, and thewr vmons an intersections.

If all these n experiments are independent, and £(4) 1s the
probability of the event4, 1 F, then

P(dy % Ay x - x A,) = R(4)B(4;) + B(A4,).

Example : Anevent .4 has probability p of occuring in a
single ti1al. Find the probability that .4 occurs exactly & tumes,
k<n mn tnals.

Let (QQ, F, P) be the probability model for a single
trial. The outcome of » expertments 1s an n-tuple

oo ¥ g o 2

@ = 51.57:7 "5 € L2y,

whereevery &, e @ and Q, =Q xQ x--- x Q
The event 4 occurs attnnal #7.1f &, € 4

Suppose 4 occurs exactly & tumes in @.
Then k of the <, belong to 4, say ¢, .<, .- .<, , and the
remaining » — % are contained in its compliment in A.

Probability of occurrence of suchan @ 13

22



B(@)=PUE& 4o 1= PUE DPUE Y--PUE Y -PUE )
= P(A)P(A)---P(4) P(A)P(A)---P(A)=p'q™
k n-k
However the k occurrences of A can occur i any particular
location 1inside @.
Let o, @,, -, o, represent all such events m which.4 occurs

exactly & tumes. Then
"A occurs exactly & timesm » tnals" =m wa w---Uay
But, all these @, s are mutually exclusive, and equiprobable.

-4
k.

Thus P("A occurs exactly & tunes m » trials")

N
=>"P(@) = NB(®) = Np"q" ™",
i=l

Recall that, starting with 7 possible choices, the first object can be
chosen n different ways,

and for every such choice

the second one in (n7-1) ways, ...

and the kth one (2—k+1) ways,

and this gives the total choices for k£ objects out of n to be
n{n—1)---(n—k+1).

But, this includes the &! choices among the & objects that
are mdistinguishable for 1dentical objects. As a result

nr—1)--(m-k+1) _ a iﬂ‘
! (n-k)E |k

represents the number of combinations, or choices of n identical objects

taken k at a time.
Using the last two equations, we get

23
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P (k)= P("A occurs exactly & tunes n n trials")

i B

H

k)

kE_n-k
pgt, k=012,---.n,

,

This is known as the formula for Bernoulli trials.

Independent repeated experuments of this nature, where the
outcome 1s either a “success”(=4) or a “tailure” (=4)

are characterized as Bernoulli trials, and the probability of k successes

in n trials is given by this Bernoulli formula, where p represents the
probability of “success” in any one trial.

Example : Toss a coin n tunes. Obtain the probability of
getting & heads 1n » trials ?

We 1dentity “head” with ““success™ (4) and

let p= P(H).

Using Bernoulli formula

p=PH)

(1 y
:| ; |pkq” " k=012,---.n,
)

Example: Consider rolling a fair die eight times. Find the probability that
either 3 or 4 shows up five times.

We identify

"success" =4 = { eit%ler 3 or 43y ={f,ulfi}.
PA)=P(f)+P(f)=c+

Thus
The desired probability is found by using Bernoulli formula for n=8, k=5
and p=1/3.

6 3’
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3. Random Variables

Let (Q, F, P) be a probability model for an experiment,
and.X"a function that maps every £ <. to a unique
point ¥ £ &, the set of real numbers. Since the outcome
1s not certain, so 1s the value X(£)=x. Thusi1f B 1s some
subset of R, we may want to deternune the probability of
«X(S)e B » To deternune this probability, we can look at
the set A=x" ()= that contamns all £<Q that maps

mto B under the tunction X',
Q

X&) ; %\)
x R

x =
F—B— "

Obviously, 1f the set 4= x7(5) also belongs to the
assoclated field F, then 1t 1s an event and the probability of
A 15 well defined. in that case we can say

Probability of the event " X (&)< B"= P(X ' (B)).

However, ¥ *(8) may not always belong to F for all B, thus
creating difticulties. The notion of random variable (r.v)
makes sure that the inverse mapping always results m an
event so that we are able to determune the probability for
any B€ R.

Random Variable (r.v): A finite single valued function x(.)
that maps the set of all experimental outcomes @ mto the

set of real numbers Ris saidtobe arv, ifthe set{e | x ) <x }
1s anevent (€ F) for every ymR.

25



If X is a random variable, then
EIX (@ <xl={X<x}
15 an event for every x.
Arte fa<X <b} {X =a} also events ?
with » = a since {x <a} and {x <5} are events,
1X¥=a’={X>af{ jsan event
And hence

tX>ajn{x<bi={a<Xx <} isalsoan event.

1 3 «
Thus,y 2- 5 < ¥ =< r1s anevent for every .
i -
Consequently
n=1
15 also an event.

{a—l—ijfia}:{){:a}

Fi

All events have well defined probability.
Thus the probability of the event {¢ | x ¢y = x } must
depend on x. Denote

PAE [(H(EYSn }= Falx) 20.

The role of the subscript X" 1s only to identify the actual r.v.
Fr(x) 18 the Probability Distribution Function (PDF)
assoclated with the 1.v X

26



Distribution Function: Note that a distribution function
2(x) 1s nondecreasing, right-contmuous and satisties

g(+x) =1, g(-«)=0,

1.e., 1f g(x) 1s a distribution function, then
(1) gl+n)=1 g(-=)=0,

(1) 1f x; = x5, then &(x1) = g(x;),
and

(1) g(x%) = g(x), forall x.

We need to show that Fy(x) detined as

PY|X(E)Sx }= Fp(x)20.

satisfies all properties in 1, 11, 111
Foranyrv .Y,

(i) FX{+m):P{§|X{§)g+m }: P(Ry=1
and  Fy(-w) = P{&|X(&) €~ }= P($) = 0.

(11) If x, < x,. then the subset (-=.x;) C(-=.x)).
Consequently the event 14X (5) < x §Cis[X(£) < x,5.
SINCe X (&) = x, 1mplies £ ($) = x3. As a result

Fo(x)2 P(X(&E)<x )< P(X(&E)<x,)2 Fr(xy),

27



implying that the probability distribution function 1s
nonnegative and monotone nondecreasing.

(in) Let x <x, <x,, <- < x, < %, and consider the event
Ay = { §lx<X(S)=x, }-
since

13 B EYE 506 L ks L8 vl
using mutually exclusive property of events we get
e o= Plx< X (&)< Is;}z Fe(a,)— Fy(x)

But A4, c4 A, and hence

lim A4, = |4, =¢ andl lim P(A,)=0.

m A ﬂ ¢ =¢ and hence lm (A;)

—oo ol

Thus
%gl;?{ﬂk}z }ElﬂguFf(xk}— F(x)=1.

But limx, =57, the right linut of x, and hence

F£(I+) = Fp(x),

1.e., Fy(x) 15 right-contimuous, justifying all properties of a
distribution function.

Additional Properties of a PDF

() It F.(x,) =0 for some x,. then Fy(x)=0, x =x,.

Tlhus follows, since Fy(x,) = PX (&) <x)=0 mplies {X (&)< x,}
is the null set, and for any = <. 1 X() <x | will be a subset
of the null set.
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(V) Prx($)>xj5=1- Fp(x)

We have {x (&) <x ju{x (&) >x }=Q and since the two events
are mutually exclusive, P{x(&)>x }=1- F (x)

(V1) Pl <X(E)<xy }=Fe(x))- Fr(x), x> 1.

The events {x ¢ =x } and {x <X <x} are 11111h1*all}-'
exclusive and their wnion represents the event {x = x, }

(V1) P(X(&)=x)= Fo(x)— Fpo(x").

Let x,=x-¢, £¢>0, and x; = x.
From Pix <X(&)<x, $= Fp(xy)— Felx), x,>x,.

1 | T - £F) < l_ — — £
IEIEEPﬁ L XSV S = Hekin) lﬂéﬁﬁ{x £).

01

PLX (&)= x §= Fy(x)= Fg(s").

According to Fr(x%)= Fy(x),

Fr(xy). the limit of Frz(x) as x — x, from the night always exasts

and equals Fx (xp).

However the left linut value #Fr(x;) need not be equal to 75 (x;).
Thus

Fe(x) neednot be continuous from the lett.

At a discontimuty point of the distribution,

the left and right lumits are different and from

PLX(E)=x j= Fr(x)— Fp(s7).

P'{X(;} = &y }: Fe(xg)— Fyp(xg) = 0.
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Thus the only discontinuities of a distribution function 7, (x) are of the jump type,
and occur at points x, where

P{X(E)=x, }=Fy(x) = Fy(x;)>0.

is satisfied.

Example :

Xisar.vsuchthat xE)=c & e Q. Find F,(x).

For x<c. {X(E)<x}={¢ }.sothat F (x)=0,and for x>c¢, X()< x}=0. so that F (x)=1.

The(x)

» Xis said to be a continuous-type r.v if its distribution function £ (x) is continuous.
In that case F,(x )= F,(x) for all x, and from

P{XE)=x, }=F,(x,)-F,(x;)>0 weget P{X=x}=0.

A

 If 7, (x) is constant except for a finite number of jump discontinuitics
(piece-wise constant; step-type), then X is said to be a discrete-type r.v.
If x, is such a discontinuity point, then from
P { X{é ) =X, }: )L\ ( Xy ) o f-(}‘” ) >0 W€ get pz’ - P{‘Y - '\-I' } = [‘I-‘-' ('\-i) F-‘-' (11_ )

1 F(x)
I at a point of discontinuity we get

From Fig,

Ll

¢

P{X =c}=F,(c)-Fy(c)=1-0=1,

Example:
A fair coin is tossed twice, and let the r.v X represents the number of heads.
Find F, (x).

Inthiscase Q = {HH .HT .TH .TT }. and X(HH )=2.X(HT )=1.X(TH)=1,X(IT ) = 0.
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Py (x)

¥
=

I !
From Fig., PX =1}=F (D-F,(1)=3/4-1/4=1/2.

Probability density function (p.d.f)

The derivative of the distribution function F (x) is called
the probability density function f, (x) of the r.v X.
Thus

i A dFy(x)
A=

dx

Since

dF ,(x) e kb =P %)
. = lim — <

f.!‘rl- Ax—0 j.\

=),

from the monotone-nondecreasing nature of £, (x). it follows that
£, (x)=0 for all x.

fr(x) will be a continuous function, if X is a continuous type r.v.

However, if X is a discrete type r.v , then its p.d.f has the general form
fylx)
Frlx)= Z p; O (x— X.)s
I_

TT}TT?T

F x o

i

where x, represent the jump-discontinuity points in 7, (x).
As Fig. shows 7, (x) represents a collection of positive discrete masses,

and it is known as the probability mass function (p.m.f) in the discrete case
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a dF v (x)
dx

F,.(x)= _r S (u)du .

From /fi(x)

we also obtain by integration

Since F (+ ) = 1. this yields f £ lxyde =1

Further, from 7, (x)= [ 7 (u)du we also get
Pl x XE)E a5 f=Fe(m)— Pelm )= [ fala)ds,

Thus the area under 7, (x) in the interval (x,,x,) represents
the probability in the above equation

1 F\-(l”) nf\(x)
l ___________________________ y
X Xy e X1 Xy "X
(@) (b)

Continuous-type random variables

1. Normal (Gaussian): X 1s said to be normal or Gaussian r.v, if
Fo(x) = ———
This 1s a bell shaped curve, symmetric around the parameter p,
and its distribution function 1s given by

; 2 1 2 B X —
e—(_\—p) /2a C{}’A: G U i
(8)

e—(_\'—u )2 /262

Fy(x)=

x |

where 6 (x) - [ —— "4y is often tabulated.

Since f,(x) depends on two parameters p and o°,

the notation X ~N(u,6”) will be used to represent

. 1 ey 20
fr(x) = o—=¢

2nG ©
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'y f\{\)

‘

-_/ > X
i o
2. Uniform: X~ U(a,b), a<b, 1f
1 A 1 Se(®)
. — a<x<b, 1 |
.f)((x): b—a, “ ! bh—ua
0, otherwise. |

3. Exponential: X~ (1) if

' 1 - fi(x)
» _}—.\':‘A‘ x> 05
fo(x)y=42 " 07
0, otherwise. | > X
4. Gamma: X~ G(o,p) 1f (a >0, B >0)
o —1 /o (x)
X —x/P o
= e s,
feo= A Tapr R0 V\_
1 0, otherwise. . .

If oo =mn aninteger I'(n)=(n-1)!
5. Beta: X~ B(ab) if (a>0, b>0)

F(%)
] x;f*l(]_x)]}7|5 0<x<17
B(a,bh)

fy(x) = .o
0, otherwise. . 1
where the Beta function g (a,5) 1s defined as
B(a,b) = J: u (1 —u) "du .
6. Chi-Square: X ~y’(n), if

J ] ni2-1 _-x/2 Ji(x)
fx(x)=42"Tm/2)> ° 7

1 0, otherwise.

| kL

Note that x°(n) is the same as Gamma (n/2,2).
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7. Rayleigh: X ~R(c?), if

fr(x)
X et i,
3 J — € s X >0 :
1 0, otherwise. > X

8. Nakagami — m distribution:
2 ~ M . Aere
o i (E) th—le—m_\ J-_l-’ XZO
fe(x) =T (m)\ Q
0 , otherwise

9. Cauchy: X ~C(a,p), if

; o/
fr(x)=— —, —® < X < 40,
| o+ (x—p)°

10. Laplace:
f\ (x ) >

1 e x|/ h .
R :

2.A

11. Student’s #-distribution with n degrees of freedom

o F((n+1)/2)( 3 Y nED2
AL I+ — s — WL 0 ,
nf.r ({)

-, ¢
12. Fisher’s F-distribution

mi2_ nl2 mi2—1

{(m+n)/2} m" "n
f.(z)= T(m/2)T(n/2)  (n+mz)™""?"

0o . otherwise

z>0
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Discrete-type random variables

1. Bernoulli: X takes the values (0,1), and
P(X=0)=¢q, P(X=D=p.

2. Binomial: x~ B, p), 1if AP(X = k)
P(X = k) (”J Kk ko= 0,1,2 ‘
= == P q ; = sl gy e o HEG
k | | ‘ | |y Jf
. R . o> | 2 n
3. Poisson: X ~P(h), 1f
- L tP(X = k)
P( _k): F: k:Onlazﬂ'“:co
|I‘|H|||I|. f
4. Hypergeometric:
m ‘N m
k Hn k| i .
P(X = k)—+’, max(0,m +n—N) < k < min(m, n)

\n

5. Geometric: X ~g(p) 1f
P(X =k)=pq*, k=012, ,0, ¢g=1-p.

6. Negative Binomial: X~ NB(r,p), 1f

k-1 Y R
| pg ", k=r,r+l, -
!/‘

7. Discrete-Uniform:

P(X =k) = ]— k=12,

j.

P(X = /f)=[
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Conditional Probability Density Function

For any two events 4 and B, we have defined the conditional
probability of 4 given B as

P(A|B) = P(;'(;)B), P(B) #0.

Noting that the probability distribution function £, (x) 1s
given by

Fyla) = PLXG)E x 5

we may define the conditional distribution of the r.v X given
the event B as
P{(X¢E)<x)nB}

P(B)
Thus the definition of the conditional distribution depends
on conditional probability, and since 1t obeys all probability
axioms, it follows that the conditional distribution has the

same properties as any distribution function. In particular
P{(X(E)<+0 )n B} P(B)

Fy(x|B)=PlX(E)<x|B }=

Fy(+o | B) = 2 = =1,
P(B) P(B)
i ( _ 1
Foiow By PAEE) S =)0 B} PO _
P(B) P(B)
Further

P{(x, < X(¢)< x,)Nn B}
P(B)
= Fy(x, |B) - Fy(x,|B),

P(x, < X(E)<x,|B)=

Since for x, >x,,

(XE)<x)=XE)=x)ux < XE)=x)
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The conditional density function is the derivative of the

conditional distribution function. Thus
dF . (x| B)
dx ’

F.(x|B)= j fo(u|B)du. Also

fv(x|B)= and

Pr,< X&) <x, [B)= [7 £, (x| B)dx.
Example: Given F, (x), suppose B={X(E)<af Find f(x|B).
We will first determine £, (x|B). From

P{(X(¢)<x)nB}

F (x|B)=P{X(E)<x|B }= and
r(x|B) v X (E) < x|B | P(B)
B as given above, we have
( !
F-\_(xB)_PI_(XSx)m(Xsa)_,.
P(X <a)
For x<a, (X <x)n(X <a)=(x <x) so that
. P(X £x) F,(x)
Fy(x|B)==— L= — ,
3 |2 P(X <a) F,(a)

For x>a, (XSx)m(XSa)z('XSa) sothat F.(x|B)=1.

Thus
[ F)
_ _ ——— 2 x<a,
F.(x|B) =" F,(a)
l 1, X =l
J Fyl(x) % 2
and hence F,(x|B) =3 F (a)’ ’
l_ 1, x = a,
F.(x|B)
A
Fy(x)
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Example: Let B represent the event {a<X()<bf with b>a.
For a given F, (x), determine F,(x|B) and f,(x|B).
PLXE)sx)n(a<X(E)<bh)]
Pla<X(&)<bh)
_ P @) <sx)nla<X(E)<b)
F.(b)—F,(a) '

For x<a,we have { XYE)<x}n{a < X(&)<h}=¢,hence F.(x|B)=0.

Fy(x|B)=P{X(E)<x|B }=

Fora<x<bh, wehave {x¢E)<sxin{a<XE)<bl={a<X(E)<x)
and hence

Pla<X(E)<x) F,(x)-F,(a)

F,(b)y—F,(a) F.(by-F,(a)

For x>b, we have {XE)<x}n{a<XE)<bl={a<X(E)<b}
sothat F,(x|B)=1.

F.(x|B)=

Using  f.(x|B)= dFy (x| B)
' dx
; /i) e B EE by
Jx(x|B)=1F (b)-F,(a) |
0, otherwise.

Sy (x|B)

! a b

Functions of a Random Variable
Let X be a r.v defined on the model (Q,F,P), and suppose
2(x) 1s a function of the variable x. Define
Y = g(X).

Is Y necessarily a r.v? If so what is its PDF £, (), pdf 7, (y»)?
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If Xisar.v,so1s Y,
F(1)=PE) < )= P(g(XE) < »)=P(X(E) < g (~0,1).
Thus the distribution function as well of the density

function of Y can be determined in terms of that of X. To
obtain the distribution function of Y, we must determine the

set on the x-axis such that X(E)<g¢'(y) for every
given y, and the probability of that set.

, aX +b
s X X2

logX * \ | _"/}
et [X[U(x)
Example: Y =aX + b
Suppose a > 0.

R(»=PrE)<y)= (mX@)+bSy)=Pﬂx@)sy_szfify_aJand

a a
H(y)=— f)(() h] Eq. 1

On the other hand if ¢ < 0, then
y—b]

F ()= me<y= (aX@)+b<y)= ﬂw@>

[%57).

Y- bJ Eq. 2

a

andhence
f}( )—'_f)((

From Eqs 1 and 2 , we obtain (for all a)
fi5)=— f(} b]
al’

a
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Example: ¥ = X°.
F(»=PErE)<y)=Px e <y)

If » <0, then the event {Xz(é_ ) gy}:d)’ and hence
F.(y)=0, yv<0.

For y > 0, from Fig.

M pie st
the event (¥ (&)< »y}={X*(E) <y} is equivalent to {x, < X (&)< x,}.
Hence

Fr(y)=Plx; < X(E)< %, )= Fy(%,) — Fy(x)

= F, () -Fy(=+fy), y>o0.

By direct differentiation, we get

| (r D+ 7o), w0
fr(P)=q2fy ¥ &3 = * ’
1 l Jl_ 0, otherwise .

If f.(x) represents an even function, then f,(») reduces to
fHr(») = IT Iy (\/1_ ) U(y) where U is the unit function
,V

In particular if x ~ n (0,1), so that

; ] 29
fr(x) = e,

we obtain the p.d.f of y = X2 to be

. 1 iy
.f}'(}’):me' U(y).

Notice that the above /, (») represents a Chi-square r.v with n =1
since I (1/2)=+/r.

Thus, 1f X is a Gaussian r.v with n =0, then y = x?
represents a Chi-square r.v with one degree of freedom
(n=1).
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Example: Let

’_\' - C, X =8,
=4 0. S s G

Y =g(X)
{.\" + C, X < —c.

In this case
P(Y =0)=P(—c< X(E)<c)=F.(c)- F(~c).

For y >0, wehave x>¢. and Y (&)= X(&)-c sothat
F(»)=PIE)<y)=PXE)-c<y)
= P(XE)<y+c)=F,(y+c), y>0.
Similarly y <0, 1f x <-¢,and Y ()= X (&) + ¢ so that
Fr(»)=PI(E)<y)=P(XE)+c<y)
=P(XE)<y-c)=F,(y-c), y<O.
Thus
[l wel;

..'fj-'(.]!) _ 1 }(1 { :I'! —_ (_r}_. '1‘ < {}

Im ) Fe) 45 (0)
= e
L
|

Example: Half-wave rectifier

[x x>0, }

lo. x=o.

In this case .

Y = g(X): g(x)=

P(Y =0)= P(X(£) <0) = F,(0).
and for y >0, since v = X .
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F(»)=PYE)<y)=PXE)<y)=F(p).
Thus

_ falv), val ) )
.f;' (y)= { o UF 'y <0 = Fz (VU (y).

Note: As a general approach, given y = o(x).

first sketch the graph y = g(x). and
determine the range space of y.
Suppose « < y < b 1s the range space of y = g(x).
Then clearly for y<a. F(»)=0. and
for y>b, F,(y)=1,
so that £,(») can be nonzero only in a<y<b.
Next, determine whether there are discontinuities
in the range space of y.
[f so evaluate P(Y()=y,) at these discontinuities.
In the continuous region of y, use the basic approach
F(»)=Plg(XE) < y)
and determine appropriate events in terms of
the r.v X for every y.
Finally, we must have F,(y) for —e<y<+«x and
obtain
dF, ()
ufl'

in —a<y<hb.

Frly) =
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However, if ¥ =g(X) 1s a continuous function, it is easy to
establish a direct procedure to obtain /().

A continuos function g(x) with g¢'(x) nonzero at all but a

finite number of points, has only a finite number of maxima
and minima, and

it eventually becomes monotonic as |x — .
Consider a specific y on the y-axis, and a positive

increment Ay as shown in the below Fig.

L for y=g(X). where g(-) is of continuous type.
Using

Bl o 971

e

)< x, y= F(x,) - Fy(x,) = [ fy (x)dx .
we can write

Ply<Y(E)< y+Ay)= fj £ (u)du = f, () Ay.
But the event iy <Y (&)= y+Ay{ can be expressed in terms
of x) as well.
To see this, referring back to the above Fig. , we notice that

the equation y=g(x) has three solutions X;.x,.x;
(for the specific y chosen there).

43



As aresult when {y <y ()< y+ay} the r.v X could be in any
one of the three mutually exclusive intervals
X, <XE)=<x +Ax}, {x,+Ax, <X(E)<x,} or {x;<X(E)<x,+Ax,}.
Hence the probability of the event in
Ply<Y@<y+ay}= [ frGwdu = f,(y)-Ay.
is the sum of the probability of the above three events, 1.e.,
Ply<YE)<y+Ay}= Pix, < X(E) < x, + Ax,}
+ Pix, + Ax, <« X(E )= x,t + Pix, <« X(E) = x, + Ax,}.

For small Ay. Ax,. making use of the approximation in

( i 1 v+ Ay :
Py<YE)sy+Ayg= j fr(u)du = f,(y)-Ay.
we get

Sy (DAY = [ (x)DAX + [ (x,)(—Axy) + [ (x3) Ax,.

In this case, Ax, >0, Ax, <0 and Ax, >0, so that the above
equation can be rewritten as

Ax, | RS N

and as Ay — 0, the above equation can be expressed as

—_— | -
Jr(¥)= Z |.ff},- / de Tx(%)= Z

]

L) =) fr(x)

] :
T K

The summation index 7 in the above equation depends on y.,
and for every y the equation y = g(x,) must be solved to obtain
the total number of solutions at every y, and the actual

solutions x,.x,.--- all in terms of y.
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Example: Yzé. Find /,(»).

Here for every y, x, =1/y is the only solution, and

AP ]7 so that d —%_yj,
dx %> dx|.., 1/y°

and substituting this into

Jr(y )_Z|f‘f”| S (x;) = Z|

we obtain

L |
f}' (}") = _2](\[_}
y y

In particular, suppose X is a Cauchy r.v X ~C(o,pn=0) . te.

. o/mn o /T
fr(x) = — - = o, —®<X <+,
&~ =+ (x =)y o +x”

( )| Sy (X))

In that case from

L 1 (1
f)' (V)= _gf\ [_J ”
y y

Y =1/X has the p.d.f

1 o/m - (Ma)/=m
yVal+(1/y)?  (a) +yp?
which represents the p.d.tf of a Cauchy r.v with parameter 1/a.
Thus if X ~C(a,p=0) then 1/X~ C(1/0,n=0)

fr(y)=

— 0 <y < 40w,

Example: 7, (x)=2x/n°, 0<x<n, and Y =sin X. Determine f, ().

Since X has zero probability of falling outside the interval (0,m),
y =sinx has zero probability of falling outside the interval (0,1).
Thus f,(y)=0 outside (0,7)
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For any 0 < y <1, from Fig.,

Y f(x)

. '
y=sinx? i

----- o

£_1 % AW A3 "

the equation y =sinx has an
infinite number of solutions ---,x,, x,, x;,---, where x, =sin™" y
1s the principal solution.

Moreover, using the symmetry we also get x, =n —x, etc.
Further,

“y —Losr—\/l—sm Y—-\/l—)
dx

so that

dy 5

—{  =4fl-

dx|,

Using this in

fi(x;) we obtain for 0 < y <1,

(>|

ﬁ(})—Z\/—f ¢ (x)).

But from Fig., in this case f (x )= /f.(x)=/fi(x,)=--=0

(Except for 7,.(x,) and f,(x,) the rest are all zeros).
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] , ] ( 2%. Dy
fi(y) = (fy(x)+ £ (x,))= = = =
1- ‘\/1 — yo AR LR
’ )
2(x,+7 — x,) J— Oz y gl
- J :l :'T['\fl_.""h
n ‘/1 =X l 0. otherwise.

Functions of a discrete-type r.v

ﬂllq

Suppose X 1s a discrete-type r.v with

P(X =X.)= D, X=X;5Xy5" %% and

Pt 3 78

Y =g(X).

Clearly Y 1s also of discrete-type, and
when x =x, y, =g(x), and for those ,

PY =y)=P(X =x)=p, y=Y:0"
Example: X~ P(), so that

A k
N

P(X :k):e”‘“?, k=0,1,2,--

-’y‘r_j---

Define Y = X° +1. Find the p.m.f of Y.

X takes the values 0,1,2,--- .k, -

takes the value 1.3,...  k’+ 1,

47
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PY=k*+1)=P(X =k)

so that for j=#4"+1
W :

= 7)= = Ji] gt =13 ek &,
P(Y =) P(X «/./ 1) e (m)!, j=13,- k> +1,

Mean, Variance

Mean or the Expected Value of a r.v X 1s defined as
Ny = X =E(X)= J‘_J”x Sy (x)dx.

If X 1s a discrete-type r.v, then using

fe(x)=2 pd(x-x). we get

e = X = B = J‘pr!.S(x—xi)dx :Zx,.pf JS(x—x{)dx

=Y up =S P =), |

Mean represents the average (mean) value of the r.vin a
very large number of trials.

For example if X~ U(a,b), (U representing the Uniform Distribution )
Then using

1
fr(x)= 1b—a ’

dE xE b,

0, otherwise.

")l 2 2
E(Y)—JJ} X ] L)_ b~ —a” a+b
“ ab-a  b-a 2|, 2(b-a) 2

1s the midpoint of the interval (a,b).
It X is exponential with parameter 3. as

J] ,,\_-;-k, x>0,

- 4
A-/ .
0, otherwise.

f)((x) -
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X o ’ e Yy =
then E(X):J.Uze dx =\ R dy =\,
implying that the parameter . represents the mean value of
the exponential r.v.

Similarly 1f X is Poisson with parameter A as

PLX = k)= e}‘}!;—i, =0,1,2,-- ,
Using |

Ny :ijp!. = ij. P(X =x,).

we ge£ |

. ~ 4 ~ ~ - .y l" o 7 }‘f"
E(X)=) kP (X =k)=) ke —T = Z/f?

k=0 k=0
L

A K o
A 3 A i Y

= e_;'z_ —_— ke"‘z_—: AETE™ = g,
L (k= 1)! i

k= i=0

Thus the parameter A also represents the mean of the Poissonr.v

For the normal r.v

fy(x)= S S o (¥R /207
21 2

x-n) /20"

0
|

Thus the first parameter in X ~N(u,c°) is the mean of the
Gaussian r.v X.
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Given X ~ £, (x), let ¥ = g(X) defines a new r.v with p.d.f £, (»).
Then the new r.v Y has a mean p, given by

ny=EX)= [y £ (»)dy.

It appears that to determine £(Y), we need to determine f, (y).
However this is not the case if only £(y) 1s the quantity of
interest.

The following formula can be derived
E(Y)=E(g(X)= [y fi(0dy = [ g(x) fy (x)dx.
In the discrete case, the above formula reduces to
E(Y)=) g(x)P(X = x,).

i

Thus, 7,(») 1s not required to evaluate E(Y) for y = g(X).
Example: Determine the mean of ¥ = X, where X is Poisson T.v.
Using

?\k

P(X =m=e*——,k2012m
=
w0 k
E(x?)- ZkPuaw»-zk“ﬂ zkﬁ;
k=0 = 5
o3 k i+1
= ey h— —-ﬂzu+nk

k=1 (k - l)' i=0

_Kc}*[zfii—;+ -’-‘ ;L-IJ KG}“[21£+(3 J

!
i=1 I

& i x m+1
= e — . +e’ |=he™” Z 5 + e’
i=1 (1 - l)' n=0 ”?I
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In general, £(x*) is known as the kth moment of r.v X.
Thus if X~ P(%), its second moment is given by

E(x?)=nre (e’ +e" )=+ 1.

Mean alone will not be able to truly represent the p.d.f of
any r.v. To illustrate this, consider the following scenario:
Consider two Gaussian r.vs X,~N(0,1) and X,~ N(0,10).
Both of them have the same mean p =0.

However, as the below Fig. shows, their p.d.fs are different.

4

F o) 47 (x)

N

» X, > X,

o?=1 c’ =10
One is more concentrated around the mean, whereas the
other one (X,) has a wider spread.
Clearly, we need atleast an additional parameter to measure
this spread around the mean.

For ar.v X with mean n, X - pn represents the deviation of
the r.v from 1ts mean.

Since this deviation can be either positive or negative, consider
the quantity

(X —p)?

and its average value

E[(X = n)’]

represents the average mean square deviation of X around

its mean.
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Define

6’ = E[(X -p)’1>0.

With g(x)=(x-p) and using
EW)=E(g(X))= [y frndy =] g(x)fy(x)dx.

we get

o = [ (x—p) fy(x)dx > 0.

o’ is known as the variance of the r.v X, and its square

root o, =+E(X-p)’ is known as the standard deviation of X.

Note that the standard deviation represents the root mean
square spread of the r.v X around its mean p.

Expanding

o = [ (x— ) fy(x)dx > 0.

and using the linearity of the integrals, we get

Var (X) =0} = [ "(x? = 200 + p?)fy (x)dx

= [ % fe(ody =2 [ x f(x)dx +

= E(x?)-2up+ 0’ = E(x7)-

- E(x)-[Ex)] =x>-X".
Alternatively, we can use
cr=E(X)-[E(x)] =x*-X".
to compute o°.

Example : For Poisson r.v

c2=X-X =(2+1)-22=1.

Thus for a Poisson r.v, mean and variance are both equal

to its parameter ).
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To determine the variance of the normal r.v N(un.o %), we
can use

Var (X)=E[(X - pn)’]= J..:(x - U )3%(3 (=)' 128° g
" T =

To simplity , we can make use of the identity

J”:f.\'(-’f)d“ - jj%e w28 g = |
' ' na ©

for a normal p.d.f. This gives
J.:e Ccowtiae e — on 6.
Differentiating both sides with respect to o, we get

2
J.l.x(x_—“)@ (x=w)*/20% g _ E

o
or

F oo ” 1
IT(X Ll) ,\/FC

Thus for a normal r.v as in
.. I
fy(x) = —=——==¢

2o ¢

Var (X)=0"

(x—p }: /267

.
dx = o °,

~(x-p)?/2c?

and the second parameter in N (n,c*) represents the variance
of the Gaussian r.v.

The larger the o, the larger the spread of the p.d.f around
its mean.

Thus as the variance of a r.v tends to zero, it will begin to

concentrate more and more around the mean ultimately
behaving like a constant.
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Moments

In general

m, = A}“I—E(}x"f}ﬁ n =l

1

are known as the moments of the r.v X, and
.LI'H — El(}"r - "l )” |

are known as the central moments of X.
The mean is

L =m,

and the variance is

o=,

Generalized moments of X about a, are
E[(X —a)"]
Absolute moments of X, are

Ell X "]

For example, if Y~N (0.5 %). then it can be shown that

. J 0, n odd.
E(X")= |
Il°3---(n—l)0". n even,
i -1'3"'(:‘?—1)6”. n even.
E(X| )ZJ

2%kl '2 7. n=(2k+1), odd.
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To compute the mean and variance using the generalized moments of X and

absolute moments of X is often difficult, however, using characteristic function can
be helpful.

Characteristic Functions

Characteristic function of ar.v X is defined as

G, ()= E (.r:'-f'l""’ ): J : e™ fy(x)dx.
Thus @, (0)=1. and |®, (o)< forall o.
For discrete r.v s the characteristic function reduces to
Dy(@)=) e P(X =k).
k
Example: If X~ P() then its characteristic function is given by

¥ - & ¥ g FLOERN |
.43 = . M s v (A2 } 3 e 3 o
! ” () A, ; M F. Ly Al 1)
fl}:.f."J]:'} el T—=p 2 —_— g = g ;
] r
K el "

k e 4

It can be shown that

I 0P (0

or E(X)=

j cm

Similarly,

E(X?)=— {'_qf"'(,m}l

i 80 L &

Repeating this procedure k times, we obtain the k" moment of X as
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=1 :
ExY)=—22000 sy
ot L,

Thus characteristic functions are used to compute the mean, variance and higher
order moments of any random variable X

Example:

If X~ P(3) is Poisson then
D, ()= RYCLE

cb (o)
e ——————— < {_’

cw

E(X) = L{“(D.,[- ()

E(X)=A

3D (o)

[ hem . jo 32 Aef® a2 g
20 ot ek (W) + % )
el ’

E(x?)=—L

;_“_'E(I)_,‘_(m
j; oo’

o

E(XH)=1+2

The characteristic function of a Gaussian r.v itself
has the “Gaussian” bell shape. Thus if X ~ N (0,6 ?). then

5 3
x“{2a "

i 1
JylX)=—F—c¢
A/ 2716 °

and

h -1_“” = e clail2
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B

)]

Note that o *in f,(x) and @ ,(w) are reverse (s* vs e

(8]

Two Random Variables

In many experiments, the observations are expressible not as a single
quantity, but as a family of quantities.

Example:

To record the height and weight of each person in a community, we need two
numbers

or

To record the number of people and the total income in a family, we need two
numbers.

Let X and Y denote two random variables (r.v) based on a probability model
(Q, F, P). Then

P(xl < X(E) < w; ) =F, (x,)—-F,(x;) = J:‘r: Il dx
and
P(J"l <¥(g )=, ) = Fo(yy) - Fy(y)) = J"-."r Sy (y)dy

What about the probability that the pair of r.vs (X,Y) belongs
to an arbitrary region D? In other words, how does one
estimate, for example, P[(x, < X(E) < x,) N (y, <Y (E) < y,)]=7?
For this we define the joint probability distribution function
of X'and Y to be
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Fr(x,3)=Pl(X(E)<x)n (Y (E) < p)]
=P(X <x,Y <y)>0,
where x and y are arbitrary real numbers.

Properties of the joint probability distribution function

(1) Fy(=0,y) = Fy (x,~0) =0,
Fy (+0,400) =1
(1) P(x, < X (E) < x,,Y(E)< ¥)=Fyy (x,, ) = Fy (x,, )
P(XE)<x,y,<Y(E)<Sy,)=Fy (x,9,) - Fy(x,¥,)
(iii) P(x, < X(€) < xp 1 <YE) < 32)= Fy (%3, 72) = Fiy (%5,
— Fyy (x5, 32) + Fyy (X, 1)

This is the probability that (X,Y) belongs to the rectangle R,

In the below Figure
Y

A

R,

R R et v

> Y

Joint probability density function (Joint p.d.f)
By definition, the joint p.d.f of X'and Y is given by

(?'EF_\'}' (x, )

ox Ay

fn (x,y) =

and
Ful i, B) = _l‘:, j_:_ fyy (u,v) dudv
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Also
.[_t: J._Tf w(x,y)dxdy =1

The probability of (X,Y) € D (where D is given below Figure) is given by

Y

&

P((X,Y)e D)= I J.( fo (x,y)dxdy

x,y)eD

Marginal Statistics

In case when there are several r.vs, the statistics of each individual ones are called
marginal statistics.

Thus Fx (x) is the marginal probability distribution function of X, and fx (x) is the
marginal p.d.f of X.

All marginals can be obtained from the joint p.d.f.
F_}( ()C) - F‘\'}f (x,—i—OO )

7 Y (.}) =F XY (_+OC'.-J }’!)
Also
Fe@) = [ fu(x)dy

Jy(y) = f [ (X, v)dx
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If X and Y are discrete r.vs, then »; =2PCE =g =) represents

their joint p.d.f, and their respective marginal p.d.fs are
given by

P(X:X{.):ZP(X =X, Y :J";):prf
and

P(Y = .V,-') = ZP(Y = x;,Y — ,Vf;) = pr

. }/’
Example : Given s
£ ) Jconstant, Q= papel 1
v (%, )= _ :
ER 1 0, otherwise . Y

Obtain the marginal p.d.fs 7, (x) and £ (»). 0 I

It is given that the joint p.d.f f,,(x.y) is a constant in
the shaded region in Fig. To determine the constant ¢
. We use

J. j: J._Tf v (%, y)dxdy =1

=0

J:: [: fay (x,y)dxdy = [ 1_“( L’l;c - dx ]dy — j."l” cydy :% = =l

Thus ¢ = 2.

fo) = [ faGondy = [ 2dy =2(1-x), 0<x<l,
and similarly

FO)= [ fo(ny)de= [ 2de=2y, 0<y<l.
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Independence of r.vs

The random variables X and Y are statistically independent if
the events (X (¢) e 4} and {Y(&) e B} are independent events

for any two sets 4 and B in x and y axes respectively.

P((X(E)<x)NY(E)<y)=PXE)S )P E)< )
le.,
Fy (x,¥) = Fy (X)Fy ()
or equivalently, if X and Y are independent, then we must
have
For(x,¥)= fx(x) /1 (¥)
If X and Y are discrete-type r.vs then their independence
implies
PX=x,Y=y)=P(X=x)P(Y =y, for all 7, .

The procedure to test for independence.

Given f,,(x,y), obtain the marginal p.d.fs £, (x) and f,(»)
and examine whether

For (x,3) = f(x) [y (¥)

or

P(X=x,Y=y)=P(X=x)P(Y=y,) forall ij.

If so, the r.vs are independent, otherwise they are dependent.

Joint Moments

Given two r.vs X and Y and a function g(x,y). Define the r.v

Z = g(xy)

Define the mean of Z as
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+o0

ne = E(Z)= [z fi(2)dz

— o0

it is possible to express the mean of Z = g(x,y) in terms of fxy (x,y)
without computing fz(z).

E@)= [ zfdz= [ [ g(x.p) fur (e, )edxdy

or

Elg(x,y)]= _[ J. g (x, ) [y (x, v)dxdy
If X and Y are discrete-type r.vs, then

Elg(x,y)]=2 D 8(x, y)P(X =x,Y = y)).
i

If X and Y are independent r.vs, then

Z=g(x), W = h(y)

are always independent of each other. Thus if X and Y are independent r.vs,
then

ELg(Oh= [ [ g(h(n) £, (x) 1, (v)dxdy
= [Tg0 /e [ () 1, )y = ELg(XOELAY)

In the case of one random variable, we defined the parameters mean and
variance to represent its average behavior. How can we parametrically
represent similar cross-behavior between two random variables?
Covariance
Given any two r.v s X and Y, we define the covariance as
Cov(X,Y)= E[(X = u )Y = )]
Cov( X, Y)=E(XY)—pu,uy = E(XY)-E(X)E(Y)

= XY =X T
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LetU=X+Y
Var (U) = E[{ (X —p )+ ¥ -p, )}2]
=Var (X)+2Cov (X,Y)+Var (V)
Defining p xv as the correlation coefficient between X and Y where

Cov (X.,Y) B Cov(X.,Y)

p =
Y Var (X War (Y) G,G,

, —1% Pl <1
or
Cov (X.,Y)= prGXGy

Uncorrelated r.v s

If the correlation coefficient between X and Y, i.e., p xy = 0 then X and Y are
uncorrelated. When uncorrelated then

Cov(X,Y)=XV-XY =Pyyo,0, =0
i.e.,

E(XY)=E(X)E(Y)

Orthogonality

XandY are said to be orthogonal if
E(XY)=0

If two random variables are statistically independent, then there cannot be any
correlation between them.

However, the converse is in general not true.

Random variables can be uncorrelated without being independent.
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Example: Let Z=aX +bY. Determine the mean of Z in terms of 1,
and 1, . Also find the variance of Z in terms of o ..o, and p,,.

w, =~E(z)=L(aX +bY)=au, +bn,
and using Cov (X,Y)=p 06,6,
62 =Var(z) = E[(Z - n,)*] = Ella(X =)+ b )]
=’ E(X =)’ +2abE((X —p )(Y = py))+BEQY -, )’
=a’c | +2abp ,6 ,G6, +h°G,.
In particular if X and Y are independent, then p ,, = 0, and
G.=ac,+bG;.
Thus the variance of the sum of independent r.vs 1s the sum
of their variances (a = b = 1).

In general

ELX'y" = | [ x'y" [y (x p)dx dv.

represents the joint moment of order (k,m) for X'and Y.

Conditional Distributions

Previously we have seen that the distribution function of X given an event B is

(X(E)<x)NB)
P(B)
Suppose, we let B={y, <V (&)< y,}

F,(x|B)= P(x(€) < x | B) = 24

Then

PIXE) Sy < T EYE 3, )
P(y,<Y(§)< y,)

= F-\') (x, }’3) — F.\'}' (X5 ,1"{)

1“‘} (Jz) — 1‘“}. (J:l)
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Fy(x|y, <Y <y,)=




| |7 Fo Gu,v)duay
.
[ 1 yav
To determine, the limiting case F,(x|¥ =), we can let » =y and y,=yp+Av

This gives

Fy(x|y, <Y <y,))=

X y+Ay 3
_[_‘,_ _[I' [y (u,v)dudy J oy (e y)u Ay
A 7 () Ay

and hence in the limit

F.(x|y<Y<y+Ay)=

r fo (1. y)du
F.(x|Y=y)=I1lm F.(x|y<Y<y+Ay)=—"— ;

: Ay—>0 ° Sy ()
(To remind about the conditional nature on the left hand
side, we shall use the subscript X'| Y (instead of X) ).
Thus

J.' Sy (1, y)du

Foo(x]Y =y)=== ,

wr (XY =) 0)
Differentiating with respect to x , we get

; Sy (X, 1)
f-‘_ o }’ = V= _.
Sy (x| y) 7.()

fyv(x|Y = y) represents a valid probability density function so

: , far (X,)
v X }’ = P = — > 0
PEE D E TG

and _/
I ) Lor (%5 ¥)dx - i (») -

T fr (2 1Y = p)dx = = I
e e 7 7 175
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f\} ('x’ J:)
Jr(¥)

conditional p.d.f of the r.v X given Y =y

we shall referto f,,(x|Y =y)= as the

We may also write

For(x|Y = p)= fuy (x| y) = Lol y)
f} 1)

similarly

f}-.\-(y|¢) f\) i 1)

Sy (x)

If the r.vs X and Y are independent, then f,, (x,y) =/, (x)f, ()
and

S x| y)=f(x), S x)= 1, (¥),

implying that the conditional p.d.fs coincide with their
unconditional p.d.fs. This makes sense, since if X and Y are
independent r.vs, information about Y shouldn’t be of any
help in updating our knowledge about X.

In the case of discrete-type r.vs,
PEE = gl = 5)
P(Y=y)

P(X=x,|Y=y,)=

Example: Given |

, [f’c, Dex<c vyl
.J{.H {.'\'., .v) - 1”

otherwise ,

determine f,,(x|y) and £, ,(y|x).

The joint p.d.fis given to be a constant in the shaded region.
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This gives

J.J.}‘” (x, v)dxdy —j "k dx dy = [:ﬁcj-'f{v ==l = F=2

I~J|h-

Similarly

fy(x) = .._f‘“ (x,y)dy = j:k dy=k(l—x), 0<x<l
and
£ = [fo(yyde = [ kdx =ky, 0<y<l.

fur(69) _ 1

far(xly) =822 — 0<x<y<l,
- L)y

and

fralrim =Ll o L gcx eyt

Sy (x) 1-x"

p.d.f version of Bayes’ theorem

. ‘ w S (x,9)
USIﬂg _f_\.” (x|y)= %and f} L(y|x)= ﬁ

Jor (x,9) = f.\'n'(x W)= (Y 1x) fy(x)

or

: f_\'n'(x | V) 1y (V)
yx (Y [x)= ;

f : | ) f_\ («\)

But /

fey= [ fu Gandy = [ f (L) ()

Far G ()
.[__.,_Lf.\'n (x| y)fy (¥)dv

Jix (¥ |x)=

This equation represents the p.d.f version of Bayes’ theorem.
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Mean Square Estimation

Given some information that is related to an unknown quantity of interest

The problem is to obtain a good estimate for the unknown in terms of the observed
data.

Suppose Xi, X2, ... , Xn represent a sequence of random variables about whom
one set of observations are available, and

Y represents an unknown random variable.

The problem is to obtain a good estimate for Y in terms of the observations
X1,X2,...,.Xn

Let
Y=0(X,,X,, -, X,)=¢(X)

represent such an estimate for Y.

Note that @(.) can be a linear or a nonlinear function of the observation X1,Xa,...,Xxn
e(X)=Y-Y=Y-¢(X)

represents the error in the above estimate, and

€|
is the square of the error.

Since ¢ is a random variable,
_ 12
E{le |}
represents the mean square error.

One way of obtaining a good estimator is to minimize the mean square error by
varying over all possible forms of the estimator ¢(.) and
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This procedure gives rise to the Minimization of the Mean Square Error (MMSE)
criterion for estimation.

Thus under MMSE criterion, the estimator ¢(.) is chosen such that the mean
square error

E{|e

=
J

is at its minimum.

Theorem: (Without Proof): Under MMSE criterion, the best estimator for the
unknown Y in terms of X1,Xz,...,Xn is given by the conditional mean of Y given X .

Thus

-~

F=pX)y=EF[X]

Example : Let g ‘ Y
; ky, DOxx<ypxl
fo(x )= ,
o 0 otherwise.
where & = 0 is a suitable normalization constant. X

The best estimate for Yin terms of X is

F=o(X)=E(Y| X} = [y £, (v] x)dly

| £ (xy)
f; 1'{.1’? ”“‘):I .H_ ——

2 (%)

21! e T
100 = [ ey = [y =22 < ECE) g oo
Thus '
- {x. 74,

.f;..r(.lfl»r)z'f"“*'{”‘“‘” - =V p<x<y<l.

f.(x)  hke(d-x7)/2 T

Hence the best MMSE estimator is given by
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¥ =0(X)=E(Y|X}= [,y f,,(v| x)dy

3 « ek @
= J y=tdy =2+ j vody
¢ l-x® I-x? Jy” -

1 |
( 2 ) . ] -
— g 0
3/71—x°
X

T 1

(2 ) 1-x" _2(1+x+x)

-

3 =it 3 | —x

Sequences of Random Variables and Central Limit Theorem

Let X7, X2, X3,... be a sequence of random variables which are defined on the
same probability space, share the same probability distribution D and are
independent.

Assume that both the expected value y and the standart deviation ¢ of D exist and
are finite.

Consider the sum:

Sh=X1+ ...+ Xa,

Then the expected value of S, is nu
and its standard deviation is o n *:

Furthermore, the distribution of S, approaches the normal distribution N ( nu , on)
as n approaches «.

In order to clarify the word "approaches" in the last sentence, we standardize S,
by setting

Z = Sn T

o\/n

Then the distribution of Z, converges towards the standard normal distribution
N(0,1) as n approaches <.

This means, if F;z(z) is the cumulative distribution function of N(0,1), then for every
real number z, we have

lim P(Z, < z) =F;(2)

—00

or, equivalently,
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1 X.—u
T}HE:P(J/\/E’- Ez)=Fz{f}

where
X,=85/n=(X1+---+X,)/n
is the "sample mean".

Stochastic Processes

Let ¢ denote the random outcome of an experiment.

To every such outcome suppose a waveform X ( ¢, ¢ ) is assigned.

F 3 _‘\’{f_i]

X(0E ) /TN

_\’(f.i&_ )

H[\
XL, )/

\_/

125
rhi

The collection of such waveforms form a stochastic process.

The set of { & } and the time index t can be continuousor discrete (countably
infinite or finite) as well.

For fixed ¢ ;€ S (the set of all experimental outcomes), X (¢, € ) is a specific time
function.

For fixed t,

Xi( ti, € i) is a random variable.
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The ensemble of all such realizations X ( t, ¢ ) over time represents the stochastic
process X(t).

Example:
X(t)=acos(®,+¢)

where ¢ is a uniformly distributed random variable in (0,21), represents a
stochastic process.

If X(7) is a stochastic process, then for fixed 7, X(7) represents
a random variable.

Its distribution function is given by

F, (x,t)=P{X(t) < x}

Notice that £ (x,7) depends on ¢, since for a different 7, we obtain
a different random variable. Further

f\. (x, l‘.) A dF\' (_X, [_)

Sl Bl =7

represents the first-order probability density function of the
process X(7).

For t=1¢,and t=t,, X(7) represents two different random variables
X =X(t1) and X> = X(1,) respectively.

Fort=t, and t = t,, X(t) represents two ditferent random variables
X1 =X(1)) and X> = X(1») respectively. Their joint distribution 1s
given by

e TN Rl el € L T L

and

o ) OF (X ,%;,5;5)
X et - Bl -

o) =’
ox, Ox,

represents the second-order density function of the process X{(¥).
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Similarly
f‘ {:'I:.|"“)‘:.2"“+IJ;"J "’l'lfj +.+1I.li']

represents the n' order density function of the process X(7).

Complete specification of the stochastic process X(7) requires the knowledge
of Folx . bt Yhorall b, =12 40 and forall =,
(an almost impossible task in reality).

Mean of a Stochastic Process:

u() 2 ELX (Y= | xf, (x,0)dx

represents the mean value of a process X(7).

In general, the mean ot a process can depend on the time index ¢.

Autocorrelation function of a process X(7) is defined as
R (6:1,) = ELX(1)X (6} = [ [x6s £, (630,018, vl

and it represents the interrelationship between the random variables
Xi = X(t)) and X5 = X(,) generated from the process X(¢).

Properties of Autocorrelation function
L. Rm' (.[1 7[2 ) = R:x ([2 9[1 ) = [E{X (_[2 )X (_tl )}]

2.R (t,t)=E{| X(t)["}>0. (Average instantaneous power)

3. R_(1,,t,) represents a nonnegative definite function, i.e., for any
set of constants{a, }_,

33 adR, (1p1,)20,

i=1 j=1
Autocovariance function

C.\.x (.tl ? [2 ) = R.n.\' (.[I 3 [3 ) - H_\' (.tl ) H\ (.[3 ) = R\:\' (.ZI b [2 ) - E {X([I ) } E{X(ZE)}

represents the autocovariance of the process X(¢).
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Example
X(t)=acos(o,+¢), ¢ ~U(0,2m).

This gives

W, (1) = E{X(0)§ = aE{cos(®yl + )}

=acosmE{cosq}—asinot E{sing}

since E{cosQ | = ﬁ J:r cos@dp =0=E{sing}.
b, (1) =0,

Similarly

R _(t,,t,)=a’E{cos(®t, +¢)cos(®t, +¢)]

a . . .
— 75{(3050)0 ([1 — 1, )+ COS(_(DO(.[I +1, )+20);

g

a |
= 7(:050)0([1 —1,).

Stationary Stochastic Processes

Stationary processes exhibit statistical properties that are
invariant to shift in the time index.

For a second-order strict-sense stationary process we have

150 %05 bta)=J: (%1% G +€,1, +€)
for any c. For ¢ =— 1, we get
f\ (xlaxzs [1:[2) = f\ (_x1:x2: [1 _t?.:)

1.e., the second order density function of a strict sense stationary
process depends only on the difference of the time indicest, —¢, =1.
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In that case the autocorrelation function is given by
R, (4,t,)SE{X@)X (t,)}
= I_I._r,:r; O e W W B T o
=R _(t,-t,)=R_(t)=R. (-t),
1.e., the autocorrelation function of a second order strict-sense

stationary process depends only on the difference of the time
indices t =¢, —t,.

Systems with Stochastic Inputs

A system transforms each input waveform X' (£,€.) into

an output waveform Y (1,&;) =T[X(4,S,)] by operating only on the
time variable 7.

Thus a set of realizations at the input corresponding

to a process X(7) generates a new set of realizations {Y (7,5 )} at the
output associated with a new process Y(7).

\(:PJ

/ 0 7] e,

»
| > ™t

\/}”;)

Our goal is to study the output process statistics in terms of the input
process statistics and the system function.

White Noise Process:

W(¢) is said to be a white noise process if
R, (t6:) =q(t,))d (t, —1,), where g(1,) is the average noise power
Le., E[W() W ()] =0 unless f,=1r.

Wit) is said to be wide-sense stationary (w.s.s) white noise
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it E[W(#)] = constant, and
'!IE.:III (II "fﬂj = (J“S [:II _IE} = qa {T }

If W(¢) is also a Gaussian process (white Gaussian process), then all of
its samples are independent random variables (why?).

LTI Colored noise

.

White noise ——.
h(1) N(tYy=h{t)=W(r)

W(t)

LTI = Linear Time Invariant

For w.s.s. white noise input W(7), we have
E[N(O]=n, _[ , h(t)dt, a constant
and

R (t)=gd(t)*h (-t)*h(T)

=gh'(—=t)*h(t)=gqp (1)
where

pt)=h(t)*h (-1)= j‘; h(o ) (oL +1)dor.

Thus the output of a white noise process through an LTI system
represents a (colored) noise process.

Note: White noise need not be Gaussian.
“White” and “Gaussian™ are two different concepts

Power Spectrum

In signal theory, spectra are associated with Fourier transforms.

For deterministic signals, spectra are used to represent a function in terms of
exponentials.

For random signals, spectrum has two interpretations:
e The first involves transforms of averages (We will work on this case)

e The second is the representation of the process as superposition of
exponentials with random coefficients
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Wide Sense Stationary

A stochastic process x(t) is called wide sense stationary (wss) if its mean is a
constant

E{x()}=n
And its autocorrelation depends onlyont=t-
E{x(t+7)x'(t)}= R ()

Since t is the distance from t to t + t, the function R(z) can be written in the
symmetrical form

Rrz)=E{x[t+(z/2)]x[t-(z/2)]}
In particular
E{Ix(t)}=R(0)

Thus the average power of a stationary process is independent of time t and is
equal to R(0)

Power Spectrum or Spectral Density of a WSS process x ( t), real or complex,
is the Fourier transform S(w) of its autocorrelation E { x(t +7) x (f) }. l.e.,

S(w)=_j R(J)exp(-jwr)dz

Since R(-7)=R " (), S(w) is a real function of w

From the Fourier inversion formula,

R@=[1/2m)]| Sw)exp(jwr)dw

If x (t)is areal process, then R (z) is real and even

Hence S(w) is also real and even. In this case

o0

S(w) = | R(f)cos(wz)dz=2T R(c)cos (wr)dr

—00
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R(r)=[1/(21'r)]]3 S(w)cos(wr)dw=(1/1'r)T S(w)cos (wr)dw

The cross-power spectrum of two processes x(t) and y(t) is the Fourier transform
Syy (w) of their cross-correlation

Ry (t)=E{x(t+7)y (t)} ;i.e.,

Sxy (W) =_[ Ry (r)exp (-jwz)dz
Ry(@ =[1/2m)]| Sy(w)exp(jwr)dw

In general, Sy, (w) is complex even when both processes x(f) and y(t) are real.
In all cases

Sy (W) = Siy (w)

Since

Ry (-0 =E{x(t-9)y ()} =Ry (7)

Also Sy, (w) > 0 for every spectrum

Linear Systems

Response

y(t)
LTI I—
Input ir;:}rc}ess - ) y(t) = h(ry* x(t)

Impulse response
h(1)

Frequency Response
H{w)

Express the autocorrelation Ry ( - 7) and power spectrum Sy, (w) of the response
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y(t) = T x( t-a)h(a) da

of a linear system in terms of the autocorrelation Rx( ) and power spectrum Sxx(w)
of the input x(?);

It can be shown (without proof) that
Ry 7) = Red 7) * h(z)  h( - 7)

Sy(w) = Su(w) H (w) H (w) = Su(w) | H (w) | 2

Example:

x(t) is a wide sense stationary (wss) white noise process with autocorrelation
function

Rx(7)=q 8(7)

where q is the average power. Find the spectral density of x(f).

Sxx (W) =:f Rxx(T)eXp('ij)dfz:[ qgo(r)exp(-jwr)dr=q

X(t) passes through a linear time invariant (LTI) circuit with

1 for -1<w<1
(O otherwise

and the response (output) of the circuit is y(f). Find the spectral density of the
response.

Sy(w) = Sx(w) | H (w) | 2

qg for -1<wcg1

S -
) {0 , otherwise

Find the average power of y(f)
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Average power of y(f)=E{|y (t)[]?}= R, (0)

Ry (2) =[1/(2n)]_J Sy(w)exp (jwr)dw

Ry (0) =[1/@2m)] | gexp(jw0)dw=g/m
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