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1. Basics 

 
 

Probability theory deals with the study of random phenomena 
 
Under repeated experiments, random phenomena yield different 
outcomes that have certain underlying patterns 
 
An experiment assumes a set of repeatable conditions that allow any 
number of identical repetitions.  
 
When an experiment is performed under these conditions, certain 

elementary events ξi  occur in different but completely uncertain ways.  
 

We can assign  nonnegative number P(ξi), as the probability of the 

event ξi in various ways 
 

Laplace’s Classical Definition:  
 
The Probability of an event A is defined a-priori without actual 
experimentation as  
 

          
 
provided all these outcomes are equally likely. 
 
Consider a box with n white and m red balls.  
 
In this case, there are two elementary outcomes: white ball or red ball.  
 
Probability of “selecting a white ball” = n / (n+m) 
 
 

Relative Frequency Definition:  
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The probability of an event A is defined as  

where 
nA is the number of occurrences of A   
n is the total number of trials.  
 

The totality of all ξi known a priori, constitutes a set Ω 
 
The set of all experimental outcomes 
 

Ω = { ξ1, ξ2, ... , ξk, ... } 
 
Ω has subsets A, B, C, ... 
 

If  A  is a subset of Ω, then  ξ Є A implies ξ Є Ω  
 
From A and B, other related subsets can be generated, like:  

 

  
 
 
                                                         

 
 
                                                                                                                
   

• If  A ∩ B = Ø, the empty set, then A  and B  are said to be mutually 
exclusive (M.E). 
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• A partition of  is a collection of mutually exclusive subsets of   
    such that their union is . 

                             

 
De-Morgan’s Laws:  

 

 
 
•   Event: Some of the subsets of  can be considered  as events, for 

which we must have mechanism to compute their probabilities. 
 
Example: Consider the experiment where two coins are simultaneously 
tossed. The various elementary events are   
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The subset 

 
is the same as “Head has occurred at least once” and is also an event. 
 
Suppose two subsets A and B are both events, then consider 
     
“Does an outcome belong to A or B = A U B ? ” 
 
“Does an outcome belong to A and B= A ∩ B ?” 
 
“Does an outcome fall outside A ?” 
 
Thus the sets  
 

 
                                    
also qualify as events.  
 
Formalize this using the notion of a Field. 
 
•   Field: A collection of subsets of a nonempty set  forms a field F  if  
 

 
Using (i) - (iii), it can be shown that 
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also belong to F.   
 
E.g., from (ii) we have  

 
and using (iii) this gives  

 
applying (ii) again and using De Morgan’s theorem we get 

 
Thus if   

 
then 

 
From now on,  we will use the term ‘event’  only to members of F. 
 
Assuming that the probability  

of elementary outcomes ξ i of  are apriori defined, how does one 
assign probabilities to more ‘complicated’ events such as A, B, AB, etc.?  
 
The three axioms of probability defined below can be used to assign 
probabilities to more ‘complicated’ events. 
 
Axioms of Probability 
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For any event A, assign a number P(A), called the probability of the 
event A.  
 
 
This number  satisfies the following three conditions  

  
Note: (iii) states that if A and B are mutually exclusive (M.E.) events, the  
probability of their union is the sum of their probabilities. 
 
The above three conditions form the axioms of probability. 

 

 
To compute the probability in ( c ) above, we re-express 
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we have 
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Here probability axiom (iii) can not be used to compute P(A), since the 
axiom only deals with two (or a finite number) of Mutually Exclusive 
events. 
 
To settle both questions above, extension to axioms must be done. 
 
σ -Field:  
 
A field F is a σ -field if in addition to the three conditions in the above 
axioms of probability, we have the following: 
 
For every sequence 
 

 
of pair wise disjoint events belonging to F, their union also belongs to F, 
i.e.,   

Using the above equation, another axiom can be added to the above set 
of 3 probability axioms, the 4th axiom as: 
 
(iv)  If Ai are pair wise mutually exclusive, then 

 
Returning back to the coin tossing experiment, from experience we 
know that if we keep tossing a coin, eventually, a head must show up, 
i.e.,  
 
P(A) = 1 
 
But  
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and using the 4th probability axiom  

 
From, 
 

 
 
for a fair coin since only one outcome in 2n  outcomes is in favor of An , 
we have 
 

which agrees with P(A) = 1, thus justifying the fourth probability axiom. 
  
In summary, the triplet (, F, P) composed of a nonempty set  of 
elementary events, a σ -field F of subsets of , and a probability 
measure P on the sets in F, subject to the four axioms, form a probability 
model. 
   
The probability of more complicated events follow from this framework. 
 
Conditional Probability and Independence 
 
In N independent trials NA,  NB,  NAB  denote the number of times events 
A, B and AB occur, respectively.  
 
According to the frequency interpretation of probability, for large N  
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Among the NA occurrences of A, only NAB of them are also found among 
the NB occurrences of B. Thus the ratio  

 
is a measure of “the event A given that B has already occurred”.  
 
Denote this conditional probability by 
 
P(A|B) =  Probability of “the event A given that B has occurred”. 
 
Define 

provided P(B) ≠ 0 
We now show that the above definition satisfies all the 4 probability 
axioms. 
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Using the concept of conditional probability, the concept of 
“independence of events” can be introduced. 
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Thus if A and B are independent, the event that B has occurred does not  
give any clue about the event A.  
 
It makes no difference to A whether B has occurred or not.  
 
Example:  
 
A box contains 6 white and 4 black balls.  
Remove two balls at random without replacement.  
What is the probability that the first one is white and the second one is 
black? 
 
Let  W1  =  “first ball removed is white” 
        B2   =  “second ball removed is black” 
 
We need 

 

We have 
 

Using the conditional probability rule, 
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BAYES’ THEOREM 
 

 
 

From Eqs. 1 and 2 we get 
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Interpretation of  Bayes’ theorem 
 
P(A) represents the a-priori probability of the event A.  
 
Suppose B has occurred, and assume that A and B are not 
independent.  
 
How can this new information (“B has occurred”) be used to update our 
knowledge about A?  
 
Bayes’ rule takes into account  the new information (“B has occurred”)  
and gives out the a-posteriori probability of A given B.  
  
A more general version of Bayes’ theorem  involves partition of .  

where 

represent a set of mutually exclusive events with associated a-priori 
probabilities    

 
With the new information “B has occurred”, the information about Ai  can 
be updated by the n conditional probabilities 
 

            
Example:  
 
Two boxes B1 and B2  contain 100 and 200 light bulbs respectively.  
 
The first box (B1) has 15 defective bulbs and the second 5.  
Suppose a box is selected at random and one bulb is picked out.  
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(a) What is the probability that it is defective? 
 

Note that box B1 has 85 good and 15 defective bulbs. Similarly box B2 
has 195 good and 5 defective bulbs.  
 
Let  D = “Defective bulb is picked out”. 
 
Then  

         
Since a box is selected at random, they are equally likely. 

Thus B1 and B2 form a partition and we obtain 
 

 
Thus, there is 8.75% probability that a bulb picked at random is 
defective.      
 
(b) Suppose we test the bulb and it is found to be defective.  
         What is the probability that it came from box 1?  

          

 
Note that initially                      
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Then we picked out a box at random and tested a bulb that turned 
out to be defective.  
 
Can this information give some information about the fact that we 
might have picked up box 1?   

 
Thus it is more likely that we must have chosen box 1 in favor of 
box 2. (Note that box 1 has six times more defective bulbs 
compared to box 2). 

  

REPEATED SYSTEMS AND BERNOULLI TRIALS 
 

Definition: For sets A and B, the Cartesian product A × B is the set of 
all ordered pairs (a, b) where a  A and b  B. 

    
Cartesian Product of A X B  of the sets A={x,y,z} and B={1,2,3}  
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This extends to a unique probability measure           

  on the sets in F and defines the combined trio (, F, P). 
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represents the number of combinations, or choices of n identical objects 
taken k at a time.  
Using the last two equations, we get 
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This is known as the formula for Bernoulli trials.  
 

 
 
are characterized as Bernoulli trials, and the probability of k successes  
 
in n trials is given by this Bernoulli formula, where p represents the 
probability of  “success” in any one trial. 
 

 
 

Using Bernoulli formula 
 

 
 

Example:  Consider rolling a fair die eight times. Find the probability that 
either 3 or 4 shows up five times. 
 
We identify 

Thus 
The desired probability is found by using Bernoulli formula for n=8, k=5 
and p=1/3. 
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If X is a random variable, then 
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Mean, Variance 
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Moments 
 
In general  
 

 
 
are known as the moments of the r.v X, and  
 

 
 
are known as the central moments of X.  
 
The mean is 
 

 
 
and the variance is  
 

 
Generalized moments of X about a, are 
 

 
 
Absolute moments of X, are 
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To compute the mean and variance using the generalized moments of X and 
absolute moments of X is often difficult, however, using characteristic function can 
be helpful.  
 
Characteristic Functions 
 
Characteristic function of a r.v  X  is defined as  
 

 

 
 
It can be shown that  
 

 
 
Similarly,  
 

 
 
 
Repeating this procedure k times, we obtain the kth moment of X as 
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Thus characteristic functions are used to compute the mean, variance and higher 
order moments of any random variable X 
 
Example:  
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Two Random Variables 
 
In many experiments, the observations are expressible not as a single 
quantity, but as a family of quantities.  
 
Example: 
 
To record the height and weight of each person in a community, we need two 
numbers  
 
or 
 
To record the number of people and the total income in a family, we need two 
numbers.   
 
Let X and Y denote two random variables (r.v) based on a probability model 
(Ω, F, P). Then  
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Properties of the joint probability distribution function 
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The probability of (X,Y) Є D (where D is given below Figure) is given by 
 

 

 
 
Marginal Statistics  
 
In case when there are several r.vs, the statistics of each individual ones are called 
marginal statistics. 
 
Thus FX (x) is the marginal probability distribution function of X, and fX (x) is the 
marginal p.d.f of X.  
 
All marginals can be obtained from the joint p.d.f.  
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Joint Moments 
 
Given two r.vs X and Y and a function g(x,y). Define the r.v  
 
Z = g(x,y) 
 
Define the mean of  Z as 
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it is possible to express the mean of Z = g(x,y) in terms of fXY (x,y)               
without computing fZ(z). 
 

       
or 
 

 
 
If X and Y are discrete-type r.vs, then 
 

 
If X and Y are independent r.vs, then 
 
Z = g(x), W = h(y)  
 
are always independent of each other. Thus if X and Y are independent r.vs, 
then 
 

 
In the case of one random variable, we defined the parameters mean and 
variance to represent its average behavior. How can we parametrically 
represent similar cross-behavior between two random variables? 
 
Covariance 
 
Given any two r.v s X and Y, we define the covariance as 
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Let U = X + Y 
 

 
 
Defining ρ XY as the correlation coefficient between X and Y where 
 

 
or 
 

 
 
Uncorrelated r.v s 
 
If the correlation coefficient between X and Y, i.e., ρ XY = 0 then X and Y are 
uncorrelated. When uncorrelated then 
 

 
i.e., 
 

 
 
Orthogonality 
 
X and Y are said to be orthogonal if 
 

 
 
If two random variables are statistically independent, then there cannot be any 
correlation between them. 
 
However, the converse is in general not true.  
 
Random variables can be uncorrelated without being independent.  
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In general  
  

 
 
 
 

Conditional Distributions 
 
Previously we have seen that the distribution function of X given an event B is 
 

 

 
 
Then 
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p.d.f version of Bayes’ theorem 
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Mean Square Estimation 
 
Given some information that is related to an unknown quantity of interest 
 
The problem is to obtain a good estimate for the unknown in terms of the observed 
data. 
 
Suppose X1, X2, ... , Xn represent a sequence of random variables about whom 
one set of observations are available, and 
 
Y represents an unknown random variable. 
 
The problem is to obtain a good estimate for Y in terms of the observations 
X1,X2,...,Xn  
 
Let 
 

 
 
represent such an estimate for Y. 
 
Note that φ(.) can be a linear or a nonlinear function of the observation X1,X2,...,Xn 
 

 
 
represents the error in the above estimate, and 
 

 
 
is the square of the error.  
 
Since  ε is a random variable,  
 

 
 
represents the mean square error.  
 
One way of obtaining a good estimator is to minimize the mean square error by 
varying over all possible forms of the estimator φ(.) and  
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This procedure gives rise to the Minimization of the Mean Square Error (MMSE) 
criterion for estimation.  
 
Thus under MMSE criterion, the estimator φ(.) is chosen such that the mean 
square error 
 

 
 
 is at its minimum. 
 
Theorem: (Without Proof): Under MMSE criterion, the best estimator for the 
unknown Y in terms of X1,X2,...,Xn is given by the conditional mean of Y given 


X . 

Thus  
 

 
 

 
 
Hence the best MMSE estimator is given by 
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Sequences of Random Variables and Central Limit Theorem 

Let X1, X2, X3,... be a sequence of random variables which are defined on the 
same probability space, share the same probability distribution D and are 
independent.  

Assume that both the expected value μ and the standart deviation σ of D exist and 
are finite.  

Consider the sum: 

Sn = X1 + ... + Xn.  

Then the expected value of Sn is nμ  

and its standard deviation is σ n ½  

Furthermore, the distribution of Sn approaches the normal distribution N ( nμ , σ2n) 
as n approaches ∞.  

In order to clarify the word "approaches" in the last sentence, we standardize Sn 
by setting  

 

Then the distribution of Zn converges towards the standard normal distribution 
N(0,1) as n approaches ∞.  

This means, if Fz (z) is the cumulative distribution function of N(0,1), then for every 
real number z, we have  

 
 
or, equivalently,  
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where  
 

 
 
is the "sample mean". 
 
Stochastic Processes  
 
Let ξ denote the random outcome of an experiment.  
 
To every such outcome suppose a waveform X ( t, ξ ) is assigned. 
 

 
 
The collection of such waveforms form a stochastic process.  
 
The set of { ξk } and the time index t can be continuousor discrete (countably 
infinite or finite) as well. 
 
For fixed ξ i Є S (the set of all experimental outcomes), X ( t, ξ ) is a specific time 
function. 
 
For fixed t,  
 
X1( t1, ξ i ) is a random variable.  
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The ensemble of all such realizations X ( t, ξ ) over time represents the stochastic 
process X(t).  
 
Example:  
 

 
 
where φ is a uniformly distributed random variable in (0,2π), represents a 
stochastic process. 
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Power Spectrum 
 
In signal theory, spectra are associated with Fourier transforms. 
 
For deterministic signals, spectra are used to represent a function in terms of 
exponentials. 
 
For random signals, spectrum has two interpretations: 
 
 The first involves transforms of averages (We will work on this case) 
 
 The second is the representation of the process as superposition of 

exponentials with random coefficients 
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Wide Sense Stationary  
 
A stochastic process x(t) is called wide sense stationary (wss) if its mean is a 
constant 
 
E { x(t) } = η   
 
And its autocorrelation depends only on τ = t1 -  t2 

 
E { x( t + τ) x *(t) } = R (τ)  
 
Since τ is the distance from t to t + τ, the function R(τ) can be written in the 
symmetrical form 
 
R(τ) = E { x [ t + ( τ / 2) ] x *[ t - ( τ / 2) ]  } 
 
In particular 
 
E { | x ( t ) |2 } = R(0)  
 
Thus the average power of a stationary process is independent of time t and is 
equal to R(0) 
 
Power Spectrum or Spectral Density of a WSS process x ( t ), real or complex, 
is the Fourier transform S(ω) of its autocorrelation E { x( t + τ) x *(t) }. İ.e.,   
 

S(ω) = 




R (τ) exp ( - j ω τ ) d τ 

 
Since R ( - τ ) = R * ( τ ), S(ω) is a real function of  ω 
 
From the Fourier inversion formula, 
 

R (τ) = [1 / (2 π ) ] 




S(ω) exp ( j ω τ ) d ω 

 
If x ( t ) is a real process, then R (τ) is real and even 
 
Hence  S(ω) is also real and even. In this case 
 

S(ω) = 




R (τ) cos ( ω τ ) d τ = 2 


0

R (τ) cos ( ω τ ) d τ 
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R (τ) = [1 / (2 π ) ] 




S(ω) cos ( ω τ ) d ω = (1 / π ) 


0

S(ω) cos ( ω τ ) d ω 

 
The cross-power spectrum of two processes x(t) and y(t) is the Fourier transform 
Sxy (ω) of their cross-correlation  
 
R xy (τ) = E { x( t + τ) y *(t) }  ; i.e., 
 

Sxy (ω)  = 




R xy (τ) exp ( - j ω τ ) d τ 

R xy (τ)  = [1 / (2 π ) ] 




Sxy (ω) exp ( j ω τ ) d ω 

 
In general, Sxy (ω) is complex even when both processes x(t) and y(t) are real.  
 
In all cases 
 
Sxy (ω) = S *

YX (ω)    
 
Since  
 
R xy ( - τ) = E { x( t - τ) y *(t) } = R *

YX ( τ) 
 
Also Sxy (ω) > 0 for every spectrum 
 
Linear Systems 

 
 
Express the autocorrelation R yy ( - τ) and power spectrum Syy (ω) of the response  
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y(t) = 




x( t - α) h(α) dα   

 
of a linear system in terms of the autocorrelation Rxx( τ) and power spectrum Sxx(ω) 
of the input x(t); 
 
It can be shown (without proof) that 
 

Ryy( τ) = Rxx( τ) * h(τ) * h( - τ)  
 
Syy(ω) = Sxx(ω) H (ω) H *(ω) = Sxx(ω) | H (ω) | 2 

 
 
Example: 
 
x(t) is a wide sense stationary (wss) white noise process with autocorrelation 
function 
 
Rxx( τ) = q  δ ( τ)  
 
where q is the average power. Find the spectral density of x(t).  
 

Sxx (ω)  = 




R xx (τ) exp ( - j ω τ ) d τ = 




 q  δ ( τ) exp ( - j ω τ ) d τ = q 

 
x(t) passes through a linear time invariant (LTI) circuit with  
 

  
 
and the response (output) of the circuit is y(t). Find the spectral density of the 
response. 
 
Syy(ω) = Sxx(ω) | H (ω) | 2 

 

 
 
Find the average power of y(t) 
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Average power of y(t) = E { | y ( t ) |2 } = Ryy (0)  
 

R yy (τ)  = [1 / (2 π ) ] 




Syy (ω) exp ( j ω τ ) d ω  

 

R yy (0)  = [1 / (2 π ) ] 


1

1

q exp ( j ω 0 ) d ω = q / π 


